本文来源公众号“算法进阶”,仅用于学术分享,侵权删,干货满满。
原文链接:TimeGPT:第一个时间序列的大模型
TimeGPT是首个时间序列基础大模型,能准确预测多样化数据集。评估显示,TimeGPT推理在性能、效率和简单性上优于统计、机器学习和深度学习方法。
1 介绍
不确定性是生活的一部分,人们一直在努力预测未来。预测潜在结果的愿望是多学科的基础,反映了人类预测、制定战略和降低风险的倾向。时间序列数据在许多领域中不可或缺,用于识别时间模式、趋势和周期性变化,以预测未来价值和为决策过程提供信息。然而,目前对时间序列的理论和实践理解尚未达成共识,预测科学领域的努力未能实现真正通用的预训练模型。
2 背景
关于深度学习方法的优越性,预测界存在分歧。尽管深度学习在其他领域取得成功,但时间序列从业人员对其有用性、准确性和复杂性提出质疑。历史上,统计方法如ARIMA、ETS等已在各领域得到应用,而近年来机器学习模型如XGBoost和LightGBM在竞赛和实际应用中取得了良好效果。
深度学习方法在学术界和工业预测应用中变得流行,因其全局方法在可扩展性、灵活性和潜在准确性方面具有优势,并能有效学习复杂数据依赖关系,简化预测流程并增强可扩展性。然而,学术研究人员和从业者对这些承诺存在分歧。一些人质疑提高准确性的基本假设,认为更简单模型优于更复杂方法,而另一些行业领导者则报告深度学习方法增强了他们的成果,简化了分析流程。
当前背景下,深度学习在NLP和CV领域的优越性能无可否认,但时间序列分析领域对神经预测方法的性能持怀疑态度。这种怀疑源于评估设置未对齐或定义不清晰、次优模型、缺乏大规模标准化数据集。与其他受益于理想测试数据集的领域不同,公开可用的时间序列数据集不具备深度学习方法所需的规模和数量。因此,尽管深度学习方法具有潜在优势,但由于种种挑战和限制,其在时间序列分析领域的应用和性能仍需进一步研究和验证。
图1 单系列预测和多系列预测示意图
3 相关研究
深度学习预测模型在Makridakis竞赛中取得成功,广泛应用于产业大规模任务。最初的成功源于对RNN和CNN的改进,这两种架构最初为NLP和CV设计。RNNs和CNNs在时间序列预测中表现优异。前馈网络由于计算成本低、效率高&#