本文来源公众号“机器之心”,仅用于学术分享,侵权删,干货满满。
原文链接:预训练无需注意力,扩展到4096个token不成问题,与BERT相当
本文提出了双向门控 SSM(BiGS)模型,结合基于状态空间模型(SSM)的 Routing 层和基于乘法门的模型架构,在不使用注意力的情况下能够复制 BERT 预训练结果,并可扩展到 4096 个 token 的长程预训练,不需要近似。
Transformer 作为 NLP 预训练模型架构,能够有效的在大型未标记的数据上进行学习,研究已经证明,Transformer 是自 BERT 以来 NLP 任务的核心架构。
最近的工作表明,状态空间模型(SSM)是长范围序列建模有利的竞争架构。SSM 在语音生成和 Long Range Arena 基准上取得了 SOTA 成果,甚至优于 Transformer 架构。除了提高准确率之外,基于 SSM 的 routing 层也不会随着序列长度的增长而呈现二次复杂性。
本文中,来自康奈尔大学、 DeepMind 等机构的研究者提出了双向门控 SSM (BiGS),用于无需注意力的预训练,其主要是将 SSM routing 与基于乘法门控(multiplicative gating)的架构相结合。该研究发现 SSM