本文来源公众号“机器学习算法与Python学习”,仅用于学术分享,侵权删,干货满满。
原文链接:https://mp.weixin.qq.com/s/ljesZw_6eTOJlbcjMcM8Cw
都 2024 年,还有人不了解 Transformer 工作原理吗?快来试一试这个交互式工具吧。
2017 年,谷歌在论文《Attention is all you need》中提出了 Transformer,成为了深度学习领域的重大突破。该论文的引用数已经将近 13 万,后来的 GPT 家族所有模型也都是基于 Transformer 架构,可见其影响之广。
作为一种神经网络架构,Transformer 在从文本到视觉的多样任务中广受欢迎,尤其是在当前火热的 AI 聊天机器人领域。
不过,对于很多非专业人士来说,Transformer 的内部工作原理仍然不透明,阻碍了他们的理解和参与进来。因此