本文来源公众号“极市平台”,仅用于学术分享,侵权删,干货满满。
原文链接:OpenVINO部署Mask-RCNN实例分割网络
极市导读
OpenVINO是英特尔推出的一款全面的工具套件,用于快速部署应用和解决方案,支持计算机视觉的CNN网络结构超过150余种。本文展示了用OpenVINO部署Mask-RCNN实例分割网络的详细过程及代码演示。
模型介绍
OpenVINO支持Mask-RCNN与yolact两种实例分割模型的部署,其中Mask-RCNN系列的实例分割网络是OpenVINO官方自带的,直接下载即可,yolact是来自第三方的公开模型库。
这里以instance-segmentation-security-0050模型为例说明,该模型基于COCO数据集训练,支持80个类别的实例分割,加上背景为81个类别。
OpenVINO支持部署Faster-RCNN与Mask-RCNN网络时候输入的解析都是基于两个输入层,它们分别是:
im_data : NCHW=[1x3x480x480]
im_info: 1x3 三个值分别是H、W、Scale=1.0
输出有四个,名称与输出格式及解释如下:
name: classes, shape: [100, ]
预测的100个类别可能性,值在[0~1]之间name: scores: shape: [100, ]
预测的100个Box可能性,值在[0~1]之间name: boxes, shape: [100, 4]
预测的100个Box坐标,左上角与右下角,基于输入的480x480name: raw_masks, shape: [100, 81, 28, 28]
Box ROI区域的实例分割输出,81表示类别(包含背景),28x28表示ROI大小。
上面都是官方文档给我的关于模型的相关信息,但是我发现该模型的实际推理输raw_masks输出格式大小为:100x81x14x14,这个算文档没更新吗&#