程序员学长 | 快速学会一个算法模型,LSTM

本文来源公众号“程序员学长”,仅用于学术分享,侵权删,干货满满。

原文链接:快速学会一个算法模型,LSTM

今天,给大家分享一个超强的算法模型,LSTM。

LSTM(Long Short-Term Memory)是一种特殊类型的循环神经网络(RNN),专门设计用来解决传统 RNN 在处理序列数据时面临的长期依赖问题

LSTM 的关键特征是其维持细胞状态的能力,细胞状态充当可以存储长序列信息的记忆单元。这使得 LSTM 能够随着时间的推移选择性地记住或忘记信息,使它们非常适合上下文和远程依赖性至关重要的任务。

LSTM 的核心组件

LSTM 单元由以下几个主要部分组成

案例分享

加载数据集
import numpy as np
import pandas as pd
from keras.models import Sequential, load_model
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from tensorflow.keras.losses import MeanSquaredError
from tensorflow.keras.metrics import RootMeanSquaredError
from tensorflow.keras.optimizers import Adam
from keras.layers import LSTM, Dense, InputLayer
from sklearn.metrics import mean_squared_error as mse
from time import time
import matplotlib.pyplot as plt
import matplotlib
import warnings

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值