Codeforces 493D Vasya and Chess

本文解析了一个CodeForces上的经典博弈论问题。题目要求在一个n*n的棋盘上,通过移动黑白皇后来决定哪一方将获胜。文章给出了详细的解题思路及代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://codeforces.com/problemset/problem/493/D


题意:有一个n*n的棋盘,(1,1)和(1,n)处分别放置黑白2色的皇后,其余格子放置绿色的棋子,白色皇后先移动,每次移动必须吃掉一个棋子,如果己方皇后被吃掉和无法移动则输,问那方一定会赢,如果白方赢了输出第一步


思路:好久没看到过这么简单的博弈论了……首先确定2种情况,n=2的时候谁先手谁胜,n=3的时候谁先手谁负,假设一个n*n大小的棋盘,白方皇后向下移动一格就变成了(n-1)*n大小的棋盘不过是由黑方先手,黑方皇后向上在移动一格就变成了(n-2)*n大小的棋盘直到棋盘变成3*n则可以判断谁胜谁负;如果白方皇后向右移动,黑方皇后同时向右移动,棋盘视为n*(n-1)大小,重复n-1次之后白方皇后必定只能向下移动,则棋盘视为(n-1)*大小的棋盘不过由黑方先手,如此一来只要判断n的奇偶性就可以判断输赢了,白方皇后必赢的情况第一步一定是向下移动


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int main()
{
    int n;
    while (scanf("%d",&n)!=EOF)
    {
        if (n%2==0)
        {
            printf("white\n%d %d\n",1,2);
        }
        else printf("black\n");
    }
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值