数据分析新星,DuckDB与Pandas处理大数据速度对比

大家好,Pandas库众所周知,适合数据分析新手入门,但在大数据面前却显得处理缓慢。相比之下,开源的DuckDB以其卓越的列式存储性能,在大数据处理上速度惊人,速度远超Pandas。而且,DuckDB配备了Python库,让熟悉SQL的用户能够快速转换,大幅提升数据处理效率,接下来看看这两者在处理超亿级数据时的性能对比。

1.Pandas与DuckDB基准测试设置

下面展示基准测试所用的数据集和Pandas与DuckDB的代码实现。测试基于 M2 Pro MacBook Pro 12/19 核、16 GB 内存设备进行。

1.1 数据集信息

所使用的数据集是纽约市出租车和豪华轿车委员会(TLC)提供的行程记录数据。这些数据是在2024年4月18日从纽约市政府官方网站获取的,可以免费使用(https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page)。有关数据使用的许可信息,可以在nyc.gov网站上查询。

1.2 基准测试目标

基准测试的目标是使用Pandas和DuckDB两个工具加载Parquet格式的数据文件,进一步计算月度统计信息,包括行程总数、平均持续时间、行驶距离、总车费以及小费金额。

为此,需要生成几个日期时间字段,依据特定时间段对数据进行筛选,并在Pandas中有效管理多级索引。

数据加载完成后,会发现要处理的数据超过1.11亿条:

图片

对于结果,希望得到以下 DataFrame:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python慕遥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值