AGPL-3.0 协议:全面解析与应用场景

目录

一、AGPL-3.0 协议简介

二、AGPL-3.0 的主要特点

三、应用场景

四、注意事项

五、总结


一、AGPL-3.0 协议简介

AGPL-3.0(GNU Affero General Public License version 3.0)是一种开源软件许可协议,基于 GPL-3.0 的扩展,特别针对通过网络提供服务的应用程序。它旨在确保用户即使通过网络访问服务,也能获取到软件的完整源代码。

二、AGPL-3.0 的主要特点
  1. 网络服务的源代码要求
    AGPL-3.0 的核心在于扩展了“分发”的定义,覆盖了通过网络提供服务的场景。即使开发者没有直接分发软件,只要通过网络提供基于 AGPL-3.0 许可的软件服务(如 SaaS),用户也有权获取该软件的完整源代码。

  2. 修改与衍生作品
    如果开发者修改了 AGPL-3.0 许可的软件,或者基于该软件创建了衍生作品,无论是否分发,都必须遵循相同的许可条款,公开源代码。

  3. 专利授权
    AGPL-3.0 包含了反专利陷阱条款,要求所有获得软件的实体同时获得相应的专利使用权。

  4. 合并工作
    如果将 AGPL-3.0 许可的软件与其他软件合并,且形成了一个整体的工作,那么整个工作都必须采用 AGPL-3.0 许可。

  5. 协议遵从性
    使用 AGPL-3.0 软件的服务提供商必须确保遵守协议的所有条款,包括提供适当的版权通知和许可证文本。

三、应用场景
  1. 开源软件开发
    AGPL-3.0 适用于希望确保代码始终保持开源的开发者,鼓励社区参与和持续改进。

  2. 网络服务提供商
    对于希望通过开源方式提供网络服务的公司,AGPL-3.0 确保用户能够访问和修改源代码。

  3. 学术研究
    AGPL-3.0 适用于学术机构和研究人员,确保研究成果能够被广泛共享和验证。

四、注意事项
  1. 源代码公开义务
    AGPL-3.0 要求提供网络服务时必须公开源代码,这可能对商业项目造成限制。如果不想公开代码,可以考虑与原作者合作或购买闭源授权。

  2. 许可证的传染性
    AGPL-3.0 具有较强的传染性,如果项目中引入了 AGPL-3.0 许可的库,整个项目可能需要遵循 AGPL-3.0 的开源要求。

  3. 合规性检查
    使用 AGPL-3.0 软件时,需确保保留版权声明、提供完整文档,并明确修改记录。

  4. 法律咨询
    对于复杂的商业应用场景,建议咨询法律顾问,以确保所有操作符合相关法律法规。

五、总结

AGPL-3.0 是一种强大的开源许可协议,特别适用于网络服务场景。它确保了软件的透明度和用户的自由,但也对商业使用提出了较高的要求。开发者和企业在使用 AGPL-3.0 许可的软件时,需仔细评估其对项目的影响,并确保遵守协议的所有条款。

通过理解和遵守 AGPL-3.0 的规定,我们可以更好地利用开源的力量,推动技术的发展,同时维护开源社区的健康生态。

# Ultralytics YOLO 🚀, AGPL-3.0 license # Default training settings and hyperparameters for medium-augmentation COCO training task: detect # (str) YOLO task, i.e. detect, segment, classify, pose mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark # Train settings ------------------------------------------------------------------------------------------------------- model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml data: # (str, optional) path to data file, i.e. coco128.yaml epochs: 200 # (int) number of epochs to train for patience: 300 # (int) epochs to wait for no observable improvement for early stopping of training batch: 2 # (int) number of images per batch (-1 for AutoBatch) imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes save: True # (bool) save train checkpoints and predict results save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1) cache: True # (bool) True/ram, disk or False. Use cache for data loading device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu workers: 0 # (int) number of worker threads for data loading (per RANK if DDP) project: # (str, optional) project name name: # (str, optional) experiment name, results saved to &#39;project/name&#39; directory exist_ok: False # (bool) whether to overwrite existing experiment pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] verbose: True # (bool) whether to print verbose output seed: 0 # (int) random seed for reproducibility deterministic: True # (bool) whether to enable deterministic mode single_cls: False # (bool) train multi-class data as single-class rect: False # (bool) rectangular training if mode=&#39;train&#39; or rectangular validation if mode=&#39;val&#39; cos_lr: False # (bool) use cosine learning rate scheduler close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable) resume: False # (bool) resume training from last checkpoint amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training # Segmentation overlap_mask: True # (bool) masks should overlap during training (segment train only) mask_ratio: 4 # (int) mask downsample ratio (segment train only) # Classification dropout: 0.0 # (float) use dropout regularization (classify train only) # Val/Test settings ---------------------------------------------------------------------------------------------------- val: True # (bool) validate/test during training split: val # (str) dataset split to use for validation, i.e. &#39;val&#39;, &#39;test&#39; or &#39;train&#39; save_json: False # (bool) save results to JSON file save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions) conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val) iou: 0.7 # (float) intersection over union (IoU) threshold for NMS max_det: 300 # (int) maximum number of detections per image half: False # (bool) use half precision (FP16) dnn: False # (bool) use OpenCV DNN for ONNX inference plots: True # (bool) save plots during train/val # Prediction settings -------------------------------------------------------------------------------------------------- source: # (str, optional) source directory for images or videos show: False # (bool) show results if possible save_txt: False # (bool) save results as .txt file save_conf: False # (bool) save results with confidence scores save_crop: False # (bool) save cropped images with results show_labels: True # (bool) show object labels in plots show_conf: True # (bool) show object confidence scores in plots vid_stride: 1 # (int) video frame-rate stride stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False) line_width: # (int, optional) line width of the bounding boxes, auto if missing visualize: False # (bool) visualize model features augment: False # (bool) apply image augmentation to prediction sources agnostic_nms: False # (bool) class-agnostic NMS classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3] retina_masks: False # (bool) use high-resolution segmentation masks boxes: True # (bool) Show boxes in segmentation predictions # Export settings ------------------------------------------------------------------------------------------------------ format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats keras: False # (bool) use Kera=s optimize: False # (bool) TorchScript: optimize for mobile int8: False # (bool) CoreML/TF INT8 quantization dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes simplify: False # (bool) ONNX: simplify model opset: # (int, optional) ONNX: opset version workspace: 4 # (int) TensorRT: workspace size (GB) nms: False # (bool) CoreML: add NMS # Hyperparameters ------------------------------------------------------------------------------------------------------ lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3) lrf: 0.01 # (float) final learning rate (lr0 * lrf) momentum: 0.937 # (float) SGD momentum/Adam beta1 weight_decay: 0.0005 # (float) optimizer weight decay 5e-4 warmup_epochs: 3.0 # (float) warmup epochs (fractions ok) warmup_momentum: 0.8 # (float) warmup initial momentum warmup_bias_lr: 0.1 # (float) warmup initial bias lr box: 7.5 # (float) box loss gain cls: 0.5 # (float) cls loss gain (scale with pixels) dfl: 1.5 # (float) dfl loss gain pose: 12.0 # (float) pose loss gain kobj: 1.0 # (float) keypoint obj loss gain label_smoothing: 0.0 # (float) label smoothing (fraction) nbs: 64 # (int) nominal batch size hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction) hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction) hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction) degrees: 0.0 # (float) image rotation (+/- deg) translate: 0.1 # (float) image translation (+/- fraction) scale: 0.5 # (float) image scale (+/- gain) shear: 0.0 # (float) image shear (+/- deg) perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001 flipud: 0.0 # (float) image flip up-down (probability) fliplr: 0.5 # (float) image flip left-right (probability) mosaic: 1.0 # (float) image mosaic (probability) mixup: 0.0 # (float) image mixup (probability) copy_paste: 0.0 # (float) segment copy-paste (probability) # Custom config.yaml --------------------------------------------------------------------------------------------------- cfg: # (str, optional) for overriding defaults.yaml # Tracker settings ------------------------------------------------------------------------------------------------------ tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml] 这段代码什么意思
最新发布
05-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CarlowZJ

我的文章对你有用的话,可以支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值