一开始想到单纯用减法,后来超时,于是就看到了这篇文章
http://oj.leetcode.com/problems/divide-two-integers/
Divide two integers without using multiplication, division and mod operator.
思路:
典型的二分法。以87除4举例, (4 * 2 = 8) => (8 * 2 = 16) => (16 * 2 = 32) => (32 * 2) => 64,因为64 * 2 = 128大于87,现在我们可以确定4 * 16 = 64小于87,那么再处理87 - 64 = 23,23除4的话用上面方法可以得到5,还余3,因为小于4,扔掉,所以最后结果是16 + 5 = 21。因为需要考虑溢出问题,所以先把数字转换为unsigned long long,最后转成int返回。
long long internalDivide(unsigned long long dividend, unsigned long long divisor) {
if (dividend < divisor) {
return 0;
}
long long result = 1;
unsigned long long tmp = divisor, left;
while (tmp <= dividend) {
left = dividend - tmp;
tmp <<= 1;
if (tmp > dividend) {
break;
}
else {
result <<= 1;
}
}
return result + internalDivide(left, divisor);
}
int divide(int dividend, int divisor) {
unsigned long long _dividend = abs((long long)dividend),
_divisor = abs((long long)divisor);
bool positive = ((dividend >= 0) && (divisor > 0)) || ((dividend <= 0) && (divisor < 0));
return positive ? internalDivide(_dividend, _divisor) : (-1) * internalDivide(_dividend, _divisor);
}
本文介绍了一种使用二分法解决整数除法问题的方法,避免了传统乘法、除法和取模操作。通过将除数不断加倍直到超过被除数,然后回退一步并累加结果,最终得到精确的除法结果。
239

被折叠的 条评论
为什么被折叠?



