最长递增子序列
dp[i] 的值代表 nums 以 nums[i] 结尾的最长子序列长度。
class Solution {
public int lengthOfLIS(int[] nums) {
if(nums.length == 0) return 0;
int[] dp = new int[nums.length];
int res = 0;
//dp[i] 所有元素置 1,含义是每个元素都至少可以单独成为子序列,此时长度都为 1
Arrays.fill(dp, 1);
for(int i = 0; i < nums.length; i++) {
for(int j = 0; j < i; j++) {
if(nums[j] < nums[i]) dp[i] = Math.max(dp[i], dp[j] + 1);
}
res = Math.max(res, dp[i]);
}
return res;
}
}
最长公共子序列
class Solution {
public int longestCommonSubsequence(String s1, String s2) {
int n = s1.length(), m = s2.length();
s1 = " " + s1; s2 = " " + s2;
char[] cs1 = s1.toCharArray(), cs2 = s2.toCharArray();
int[][] f = new int[n + 1][m + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (cs1[i] == cs2[j]) f[i][j] = f[i -1][j - 1] + 1;
else f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
}
}
return f[n][m];
}
}
不相交的线
这是上一题的LCS的一个小变形
class Solution {
public int maxUncrossedLines(int[] s1, int[] s2) {
int n = s1.length, m = s2.length;
int[][] f = new int[n + 1][m + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
if (s1[i - 1] == s2[j - 1]) {
//s1【i】,s2【j】都选的情况中就包含了f[i][j-1] f[i-1][j]
f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + 1);
}
}
}
return f[n][m];
}
}