UVA 10020 Minimal coverage



 Minimal coverage 

The Problem

Given several segments of line (int the X axis) with coordinates [Li,Ri]. You are to choose the minimal amount of them, such they would completely cover the segment [0,M].

The Input

The first line is the number of test cases, followed by a blank line.

Each test case in the input should contains an integer M(1<=M<=5000), followed by pairs "Li Ri"(|Li|, |Ri|<=50000, i<=100000), each on a separate line. Each test case of input is terminated by pair "0 0".

Each test case will be separated by a single line.

The Output

For each test case, in the first line of output your programm should print the minimal number of line segments which can cover segment [0,M]. In the following lines, the coordinates of segments, sorted by their left end (Li), should be printed in the same format as in the input. Pair "0 0" should not be printed. If [0,M] can not be covered by given line segments, your programm should print "0"(without quotes).

Print a blank line between the outputs for two consecutive test cases.

Sample Input

2

1
-1 0
-5 -3
2 5
0 0

1
-1 0
0 1
0 0

Sample Output

0

1
0 1


一开始理解错题意,WA了几次之后才发现这是一道贪心题目。给出区间【a,b】,把各个区间按照a从小到大排序,然后判断a是否满足条件,如果满足条件,找出满足条件中b的最大值的那组数据,然后将这组数据的b设为新的起点a,直到找出a>m的那组区间的前一个,即这些区间就是所求的。

#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;

struct sa
{
    int x;
    int y;
}data[100007],data1[1000007];

int cmp(const sa a1,const sa b1)
{
    return a1.x<b1.x;
}

int main()
{
    int textcase;
    scanf("%d",&textcase);
    while(textcase--)
    {
        memset(data,0,sizeof(data));
        memset(data1,0,sizeof(data1));
        int m,i=0,j,k;
        scanf("%d",&m);
        int left,right;
        while(1)
        {
            scanf("%d%d",&left,&right);
            if(right==0&&left==0)break;
                data[i].x=left;
                data[i].y=right;
                i++;

        }
        sort(data,data+i,cmp);
        int max_left=0,flag,flag1,max,ans=0,tot=0;
        while(1)
        {
            if(max_left>=m)break;
            flag=max=0;
            for(j=0;j<i;j++)//找出符合条件的区间右面的值的最大的那个值
            {
                if(data[j].x<=max_left)
                {
                    if(data[j].y>max)
                    {
                        flag1=j;
                        max=data[j].y;
                        flag=1;
                    }
                }
            }
            if(flag)
            {
                ans++;
                max_left=max;//替换最大值
                data1[tot++]=data[flag1];
            }
            else break;
        }
        if(flag)
        {
            printf("%d\n",ans);
            for(j=0;j<tot;j++)
            printf("%d %d\n",data1[j].x,data1[j].y);
        }
        else printf("0\n");
        if(textcase)printf("\n");
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值