Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 40827 | Accepted: 14752 |
Description

Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
求冒泡排序交换的次数。
由于这些数可能太大,且差距很大,所以离散化一下,然后求一下逆序数,边查询边插入边即可。
//32684K 1579MS
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define M 500007
#define ll __int64
using namespace std;
int s[M],n;
struct Tree
{
int l,r,mid;
ll val;
}tree[M<<1];
struct sa
{
int id;
ll val;
}p[M*2];
int cmp(sa a,sa b)
{
return a.val>b.val;
}
void build(int left,int right,int i)
{
tree[i].l=left;tree[i].r=right;tree[i].mid=(left+right)>>1;tree[i].val=0;
if(left==right){return;}
build(left,tree[i].mid,i*2);
build(tree[i].mid+1,right,i*2+1);
}
int query(int x,int i)
{
if(tree[i].l==tree[i].r)return tree[i].val;
if(x<=tree[i].mid)return query(x,i*2)+tree[i].val;
else return query(x,i*2+1)+tree[i].val;
}
void insert(int left,int right,int i)
{
if(tree[i].l==left&&tree[i].r==right){tree[i].val++;return;}
if(right<=tree[i].mid)insert(left,right,2*i);
else if(left>tree[i].mid)insert(left,right,2*i+1);
else {insert(left,tree[i].mid,i*2);insert(tree[i].mid+1,right,i*2+1);}
}
void discretization()
{
int tmp=p[1].val,pos=1;
for(int i=1;i<=n;i++)
if(p[i].val!=tmp)p[i].val=++pos,tmp=p[i].val;
else p[i].val=pos;
for(int i=1;i<=n;i++)
s[p[i].id]=p[i].val;
}
int main()
{
while(scanf("%d",&n)&&n)
{
ll ans=0;
build(0,M,1);
memset(s,0,sizeof(s));
for(int i=1;i<=n;i++)
{
scanf("%I64d",&p[i].val);
p[i].id=i;
}
sort(p+1,p+n+1,cmp);
discretization();
for(int i=1;i<=n;i++)
printf("%d ",s[i]);
printf("\n");
for(int i=1;i<=n;i++)
{
ans+=query(s[i],1);
insert(s[i],M,1);
}
printf("%I64d\n",ans);
}
return 0;
}