题目描述
有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<=n<=30),每个物品有一个体积(正整数)。
要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。
输入描述
第一行为一个整数,表示箱子容量;第二行一个整数,表示有n个物品;接下来n行,分别表示这n个物品的各自体积
输出描述
一个整数,表示箱子剩余空间。
样例输入
24
6
8
3
12
7
9
7样例输出
0
这是一道0-1背包的题,虽然都说是用动态规划,但实际上是穷举的思路,即把所有的可能都算出来——仅此而已。这道题不难。我的代码写的不大好,因为代码里有不少令人费解的数字,用宏代替会好一些。代码如下。
本文介绍了一种解决0-1背包问题的方法,通过动态规划实现物品选择以最小化箱子剩余空间。给出的示例代码展示了如何遍历所有可能性,并最终确定最优解。
450

被折叠的 条评论
为什么被折叠?



