CMU 11-785 L18 Representation

本文深入探讨了逻辑回归原理,包括其作为感知器的扩展通过sigmoid激活函数计算输入属于类别1的概率,以及如何通过最大似然估计求解模型参数。此外,还讨论了多层感知器在网络中的作用,特别是在非线性分类任务中的应用。

Logistic regression

在这里插入图片描述

  • This the perceptron with a sigmoid activation
    • It actually computes the probability that the input belongs to class 1
    • Decision boundaries may be obtained by comparing the probability to a threshold
    • These boundaries will be lines (hyperplanes in higher dimensions)
    • The sigmoid perceptron is a linear classifier

Estimating the model

  • Given: Training data: (X1,y1),(X2,y2),…,(XN,yN)\left(X_{1}, y_{1}\right),\left(X_{2}, y_{2}\right), \ldots,\left(X_{N}, y_{N}\right)(X1,y1),(X2,y2),,(XN,yN)
  • XXX are vectors, yyy are binary (0/1) class values
  • Total probability of data

P((X1,y1),(X2,y2),…,(XN,yN))=∏iP(Xi,yi)=∏iP(yi∣Xi)P(Xi)=∏i11+e−yi(w0+wTXi)P(Xi) \begin{array}{l} P\left(\left(X_{1}, y_{1}\right),\left(X_{2}, y_{2}\right), \ldots,\left(X_{N}, y_{N}\right)\right)= \prod_{i} P\left(X_{i}, y_{i}\right) \\\\ =\prod_{i} P\left(y_{i} \mid X_{i}\right) P\left(X_{i}\right)=\prod_{i} \frac{1}{1+e^{-y_{i}\left(w_{0}+w^{T} X_{i}\right)}} P\left(X_{i}\right) \end{array} P((X1,y1),(X2,y2),,(XN,yN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值