题意:有n个骰子,每个骰子有k面,每个面的权值从1到k,求所有骰子和为s时,他们权值乘积的和。
题解:设dp[i][j]表示到第i个骰子时和为j的乘积和,易写出dp[i][j] = sum{dp[i][j - m] * m, m从1到k,但是这样的dp方程是n * k * s的,所以要优化。类似完全背包的优化,写出dp[i][j-1]的方程,两式做差,得dp[i][j] = dp[i][j-1] + pre[j-1] - pre[j-k-1] - dp[i-1][j-k-1] * k,利用滚动数组优化空间即可。
注意边界的特殊情况。
#include <bits/stdc++.h>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define ll long long
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define reveach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i)
#define REP(i,a,n) for ( int i=a; i<int(n); i++ )
#define FOR(i,a,n) for ( int i=n-1; i>= int(a);i-- )
#define lson rt<<1, L, m
#define rson rt<<1|1, m, R
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define mp(x, y) make_pair(x, y)
#define pb(x) push_back(x)
#define fi first
#define se second
#define CLR(a, b) memset(a, b, sizeof(a))
#define Min(a, b) a = min(a, b)
#define Max(a, b) a = max(a, b)
const int maxn = 1.5e4 + 7;
const int mod = 100000007;
int T;
int kase;
int n, k, s;
ll dp[2][maxn];
ll pre[maxn];
ll solve(){
CLR(dp, 0);
REP(j, 1, k + 1) dp[0][j] = j;
REP(i, 1, n){
int p = i & 1;
pre[i-1] = 0;
REP(j, i, s + 1) pre[j] = (pre[j-1] + dp[!p][j]) % mod;
CLR(dp[p], 0);
dp[p][i+1] = dp[!p][i];
REP(j, i + 2, i + k + 1){
dp[p][j] = ((dp[p][j-1] + pre[j-1] - pre[i-1]) % mod + mod) % mod;
}
REP(j, i + k + 1, s + 1){
dp[p][j] = ((dp[p][j-1] + pre[j-1] - pre[j-k-1] - dp[!p][j-k-1] * k) % mod + mod) % mod;
}
}
//REP(i, 0, n) REP(j, 1, s + 1) printf("%d %d %lld\n", i, j, dp[i&1][j]);
return dp[(n-1)&1][s];
}
int main(){
#ifdef ac
freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
scanf("%d", &T);
while(T--){
scanf("%d%d%d", &n, &k, &s);
printf("Case %d: %lld\n", ++kase, solve());
}
return 0;
}