First One
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 1511 Accepted Submission(s): 457
Problem Description
soda has an integer array
a1,a2,…,an.
Let S(i,j)
be the sum of ai,ai+1,…,aj.
Now soda wants to know the value below:
Note: In this problem, you can consider log20 as 0.
∑i=1n∑j=in(⌊log2S(i,j)⌋+1)×(i+j)
Note: In this problem, you can consider log20 as 0.
Input
There are multiple test cases. The first line of input contains an integerT,
indicating the number of test cases. For each test case:
The first line contains an integer n(1≤n≤105), the number of integers in the array.
The next line contains n integers a1,a2,…,an(0≤ai≤105).
The first line contains an integer n(1≤n≤105), the number of integers in the array.
The next line contains n integers a1,a2,…,an(0≤ai≤105).
Output
For each test case, output the value.
Sample Input
1 2 1 1
Sample Output
12
计算上面给的那个公式。
比赛的时候想了个方法,以每个位置作为终点,二分log每种取值对应的起点,这样的复杂度是O(NlogN*35)左右,但是超时。这道题时间卡的很紧,复杂度O(N*35)的都要运行1000多ms。
枚举log不同取值的区间范围,在O(N)的复杂度下算出这个范围对应的所有i,j和。采用尺取法,假设以i为起始位置,对应[p1,p2]这个区间为终止位置,这些区间都是满足的,那么当i+1时,一定有终止位置p1'>=p1,p2'>=p2才可能满足。
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
typedef long long LL;
const LL MAXN=100010;
const LL INF=0x3f3f3f3f;
const LL SIGMA_SIZE=28;
int T,N;
int a[MAXN];
LL sum[MAXN];
//[l,r) i+j的和
LL solve(LL l,LL r){
LL ret=0;
int p1=1,p2=1;
for(int i=1;i<=N;i++){
if(p1<i) p1=i;
if(p2<i) p2=i;
while(p1<=N&&sum[p1]-sum[i-1]<l) p1++;
while(p2<=N&&sum[p2]-sum[i-1]<r) p2++;
p2--;
if(p1<=p2&&sum[p1]-sum[i-1]>=l&&sum[p2]-sum[i-1]<r){
LL n=p2-p1+1;
ret+=i*n+p1*n+n*(n-1)/2;
}
}
return ret;
}
int main(){
freopen("in.txt","r",stdin);
scanf("%d",&T);
while(T--){
scanf("%d",&N);
sum[0]=0;
for(int i=1;i<=N;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
}
LL ans=0;
ans+=solve(0,1);
for(int i=0;i<35;i++){
ans+=solve(1LL<<i,1LL<<(i+1))*(i+1);
}
printf("%I64d\n",ans);
}
return 0;
}
本文解析了一道算法竞赛题目,该题目要求计算特定数组上的一种复杂表达式的总和,并提供了一个高效的解决方案,通过枚举不同区间范围并利用尺取法优化计算过程。
914

被折叠的 条评论
为什么被折叠?



