十五、自回归(AutoRegressive)和自编码(AutoEncoding)语言模型

本文讨论了自回归语言模型(AR)和自编码语言模型(AE)在自然语言处理中的应用,AR适合生成类任务但单向,AE具有更强的泛化性和无监督学习能力,但对生成式问题支持有限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考自回归语言模型(AR)和自编码语言模型(AE)

1 自回归语言模型( AR)

自回归语言模型(AR)就是根据上文内容(或下文内容)预测下一个(或前一个)可能跟随的单词,就是常说的自左向右(或自右向左)的语言模型任务,即通过前 t - 1(或后 t - 1 ) 个 tokens 来预测当前时刻 t 的 token,代表的自回归语言模型有 ELMO 和 GPT。

1.1 优点

在处理生成类自然语言处理任务时,就是从左向右的,比如文本摘要,机器翻译等,自回归语言模型天然匹配这个过程。

1.2 缺点 

该模型是单向的,只能利用上文或者下文的信息,不能同时利用上文和下文的信息。

自编码语言模型(AE

自动编码器的逻辑过程是指原始 input(设为 x)经过加权(W 和 b)、映射(Sigmoid)之后得到 y,再对 y 反向加权映射回来成为 z。通过反复迭

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瑞雪兆我心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值