MoE经典论文简述

1.开创工作

1.1 Adaptive mixtures of local experts, Neural Computation’1991

论文:Adaptive mixtures of local experts

这是大多数MoE论文都引用的最早的一篇文章,发表于1991年,作者中有两个大家熟知的大佬:Michael Jordan 和 Geoffrey Hinton。

提出了一种新的监督学习过程,一个系统中包含多个分开的网络,每个网络去处理全部训练样本的一个子集。这种方式可以看做是把多层网络进行了模块化的转换。

假设我们已经知道数据集中存在一些天然的子集(比如来自不同的domain,不同的topic),那么用单个模型去学习,就会受到很多干扰(interference),导致学习很慢、泛化困难。这时,我们可以使用多个模型(即专家,expert)去学习,使用一个门网络(gating network)来决定每个数据应该被哪个模型去训练,这样就可以减轻不同类型样本之间的干扰。

其实这种做法,也不是该论文第一次提出的,更早就有人提出过类似的方法。对于一个样本

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值