vtkDelaunay3D用法、用途及原理

1. 三角剖分Delaunay剖分的定义
      如何把一个散点集合剖分成不均匀的三角形网格,这就是散点集的三角剖分问题,散点集的三角剖分,对数值分析以及图形学来说,都是极为重要的一项预处理技术。该问题图示如下:
1.gif
1.1.三角剖分定义
     【定义】三角剖分:假设V是二维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段, E为e的集合。那么该点集V的一个三角剖分T=(V,E)是一个平面图G,该平面图满足条件:
     1.除了端点,平面图中的边不包含点集中的任何点。
     2.没有相交边。
     3.平面图中所有的面都是三角面,且所有三角面的合集是散点集V的凸包。
1.2. Delaunay三角剖分的定义
     在实际中运用的最多的三角剖分是Delaunay三角剖分,它是一种特殊的三角剖分。先从Delaunay边说起:
     【定义】Delaunay边:假设E中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:存在一个圆经过a,b两点,圆内(注意是圆内,圆上最多三点共圆)不含点集V中任何其他的点,这一特性又称空圆特性。
     【定义】Delaunay三角剖分:如果点集V的一个三角剖分T只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。
1.3.Delaunay三角剖分的准则
     要满足Delaunay三角剖分的定义,必须符合两个重要的准则:
     1、空圆特性:Delaunay三角网是唯一的(任意四点不能共圆),在Delaunay三角形网中任一三角形的外接圆范围内不会有其它点存在。如下图所示:

2.gif
2、最大化最小角特性:在散点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大。从这个意义上讲,Delaunay三角网是“最接近于规则化的“的三角网。具体的说是指在两个相邻的三角形构成凸四边形的对角线,在相互交换后,六个内角的最小角不再增大。如下图所示:


3.gif (1.61 KB)

 

3.gif 

1.4.Delaunay三角剖分的特性
     以下是Delaunay剖分所具备的优异特性:
     1.最接近:以最近临的三点形成三角形,且各线段(三角形的边)皆不相交。
     2.唯一性:不论从区域何处开始构建,最终都将得到一致的结果。
     3.最优性:任意两个相邻三角形形成的凸四边形的对角线如果可以互换的话,那么两个三角形六个内角中最小的角度不会变大。
     4.最规则:如果将三角网中的每个三角形的最小角进行升序排列,则Delaunay三角网的排列得到的数值最大。
     5.区域性:新增、删除、移动某一个顶点时只会影响临近的三角形。
     6.具有凸多边形的外壳:三角网最外层的边界形成一个凸多边形的外壳。
1.5.局部最优化处理
     理论上为了构造Delaunay三角网,Lawson提出的局部优化过程LOP(Local Optimization Procedure),一般三角网经过LOP处理,即可确保成为Delaunay三角网,其基本做法如下所示:
     1.将两个具有共同边的三角形合成一个多边形。
     2.以最大空圆准则作检查,看其第四个顶点是否在三角形的外接圆之内。
     3.如果在,修正对角线即将对角线对调,即完成局部优化过程的处理。
     LOP处理过程如下图所示:
4.jpg
2.Delaunay剖分的算法
     Delaunay剖分是一种三角剖分的标准,实现它有多种算法。
2.1.Lawson算法
     逐点插入的Lawson算法是Lawson在1977年提出的,该算法思路简单,易于编程实现。基本原理为:首先建立一个大的三角形或多边形,把所有数据点包围起来,向其中插入一点,该点与包含它的三角形三个顶点相连,形成三个新的三角形,然后逐个对它们进行空外接圆检测,同时用Lawson设计的局部优化过程LOP进行优化,即通过交换对角线的方法来保证所形成的三角网为Delaunay三角网。
     上述基于散点的构网算法理论严密、唯一性好,网格满足空圆特性,较为理想。由其逐点插入的构网过程可知,遇到非Delaunay边时,通过删除调整,可以构造形成新的Delaunay边。在完成构网后,增加新点时,无需对所有的点进行重新构网,只需对新点的影响三角形范围进行局部联网,且局部联网的方法简单易行。同样,点的删除、移动也可快速动态地进行。但在实际应用当中,这种构网算法当点集较大时构网速度也较慢,如果点集范围是非凸区域或者存在内环,则会产生非法三角形。
2.2.Bowyer-Watson算法
     Lawson算法的基本步骤是:
     1、构造一个超级三角形,包含所有散点,放入三角形链表。
     2、将点集中的散点依次插入,在三角形链表中找出其外接圆包含插入点的三角形(称为该点的影响三角形),删除影响三角形的公共边,将插入点同影响三角形的全部顶点连接起来,从而完成一个点在Delaunay三角形链表中的插入。
     3、根据优化准则对局部新形成的三角形进行优化。将形成的三角形放入Delaunay三角形链表。
     4、循环执行上述第2步,直到所有散点插入完毕。
     这一算法的关键的第2步图示如下:

5.gif
package require vtk
package require vtkinteraction
package require vtktesting
vtkRenderer R
   R SetBackground 0 0 0
vtkRenderWindow RW
   RW AddRenderer R
   RW SetSize 974 740
vtkRenderWindowInteractor RWI
   RWI SetRenderWindow RW
vtkPointSource PS
   PS SetCenter 0 0 0
   PS SetNumberOfPoints 100
   PS SetRadius 0.5
   PS SetDistribution 1
vtkDelaunay3D D3D
   D3D SetInput [PS GetOutput]
   D3D SetTolerance 0.001
vtkGeometryFilter GF
   GF SetInput [D3D GetOutput]
vtkPolyDataMapper PDM
   PDM SetInput [GF GetOutput]
vtkActor A
   A SetMapper PDM
   R AddActor A
R ResetCamera
R ResetCameraClippingRange
RW Render
wm withdraw .
update

 

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值