Feedback Nerual Network(六):Boltzmann Machine

本文介绍了一种随机型神经网络——玻尔兹曼机。它是一种反馈型神经网络,与DHNN相似但具备随机特性。文章详细讨论了其网络结构、工作模式,并从概率角度探讨了系统的收敛性,包括模拟退火方法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

It is a Random NN, is also a kind of  Feedback NN
It is similar with DHNN in many aspects, big difference is that Boltzmann NN is a Random NN
When the temperature parameter T→ 0

⇒S-Type Function approaches to Binary Function
⇒Random NN degenerates to Deterministic NN(Same as DHNN)
It can be used in Pattern Classification, Prediction, Combination Optimization, Planning etc.

 

Structure of Networks & Work Mode

Structure:
Single layer Feedback Networks
Same as Hopfield, has Symmetric Link-Weight Matrix, i.g
wij= wji
, and wii= 0

Function:
Can be viewed as a Multi-Layer Networks
Part of nodes are input nodes, part of nodes are output nodes and part of nodes are hide nodes
The hide nodes have no relationship with outside, only implement the high-order relationship between I/O

Work Mode:
Synchronous Mode
Asynchronous Mode

 

 

Discuss the Convergence (2)
From probability point of view, the tendency of system energy is always towards to the minimum
Some states of neurons possible take the values oppositely, consequently will increase the Energy.
Sometimes this is good for jumping out of local minimum point. This is another difference compare with Hopfield NN.

 

Discuss the Convergence (3)
Mimic the Annealing Method 模拟退火

At beginning, use higher temperature T
Curve of S-Type Function is flatter, the difference of probability of each state is small
Can accurately move to a minimum and also prevent  jumping out of this minimum
When near neighboring global minimum point, step by step reduce T
Curve of S-Type Function is more cliff  the difference of probability of each state is bigger
Easy to jump out of local minimum point and go to global minimum point

 

Summary:
Energy is lower
the probability of being a certain state is bigger
T is biggerS-Type Function is flatter
the difference of probability of occurring different state is small
Accurately move to a minimum and prevent jump out of this minimum point
T is smallerS-Type Function is more cliffy
the difference of probability of occurring different state is big

Easy jump out of Local Minimum Point and reach the Global Minimum

基于Spring Boot搭建的一个多功能在线学习系统的实现细节。系统分为管理员和用户两个主要模块。管理员负责视频、文件和文章资料的管理以及系统运营维护;用户则可以进行视频播放、资料下载、参与学习论坛并享受个性化学习服务。文中重点探讨了文件下载的安全性和性能优化(如使用Resource对象避免内存溢出),积分排行榜的高效实现(采用Redis Sorted Set结构),敏感词过滤机制(利用DFA算法构建内存过滤树)以及视频播放的浏览器兼容性解决方案(通过FFmpeg调整MOOV原子位置)。此外,还提到了权限管理方面自定义动态加载器的应用,提高了系统的灵活性和易用性。 适合人群:对Spring Boot有一定了解,希望深入理解其实际应用的技术人员,尤其是从事在线教育平台开发的相关从业者。 使用场景及目标:适用于需要快速搭建稳定高效的在线学习平台的企业或团队。目标在于提供一套完整的解决方案,涵盖从资源管理到用户体验优化等多个方面,帮助开发者更好地理解和掌握Spring Boot框架的实际运用技巧。 其他说明:文中不仅提供了具体的代码示例和技术思路,还分享了许多实践经验教训,对于提高项目质量有着重要的指导意义。同时强调了安全性、性能优化等方面的重要性,确保系统能够应对大规模用户的并发访问需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值