
神经网络
juliosun
这个作者很懒,什么都没留下…
展开
-
神经网络基本介绍(四):前馈网络(下)多层感知机
<br />(四)multi-layer perceptron network<br /> <br />Can solve Exclusive Linear-non-classifiable input patterns,这解决了单层感知器的缺点.本质上是由于加了隐藏层的原因。<br /><br /> <br />Each layer equivalent to a Single-Layer Perceptron Networks<br />qth layer forms a nq-1 dimension原创 2011-03-05 17:34:00 · 3330 阅读 · 0 评论 -
Neural Network Concept神经网络(一)
基本的NN概念1.Is a control method basically not depends on the Mathematical Model of operational objectives & environment2.Is suitable for the controlled objectives with uncertainty, complex, inaccuracy or high non-linearity3.Has strong Adapting, Study function原创 2011-02-15 11:20:00 · 928 阅读 · 0 评论 -
神经网络的基本知识(五):前向网络:BP网络
<br />BP网络其实还是前向反馈网络中的一种,她对于处理非线性分类问题有独特的优势。<br />BP NN can approach to any Non-Linear Mapping Relationship, only if there are enough hide layer & hide nodes.<br /> <br />Structure of BP Network is same as multi-Layer Perceptron Network only their Transfer原创 2011-03-05 17:57:00 · 2359 阅读 · 0 评论 -
神经网络(六):前馈网络Delta study principle and Hebbian study principle
<br />Delta study principle:<br /> <br /><br /> <br /> <br />Hebbian study principle:<br /> <br /><br /> <br />Approach study principle:<br /> <br />原创 2011-03-05 18:08:00 · 1946 阅读 · 0 评论 -
神经网络基本知识(二):简单分类
前面简单介绍了神经网络的概念,下面进一步了解。一。首先要清楚几个问题,什么时候可以使用?当系统要求不是严格100%输出正确率时。分类(classification)还是回归(regression)?通常状况下是分类,简单的线性分类或是非线性分类。回归是指使估计的曲线尽量接近所有分类点,实际上是分类的特殊情况。确定的(deterministic)还是随机的(stochastic)?weight权重可能有固定的最佳值,或是接近值,这是是确定的。随机的即是不确定的权重值。supervised还是unsupervi原创 2011-03-05 13:56:00 · 2626 阅读 · 0 评论 -
神经网络基本介绍(三):前馈网络(上)M-P model 和单层感知机
上图是前馈网络基本结构,分别介绍几种前馈网络: M-P model,single-layer perceptron network,multi-layer perceptron network, BP(back propagation)(一)M-P modelProposed by McCulloch & PittsConsists of fixed Structure & fixed Link-WeightsRestrain Convex-Touch Weight ⇒ output is 0Excitin原创 2011-03-05 17:11:00 · 2345 阅读 · 0 评论 -
Feedback Nerual Network(三):Design symetric link weight matrix
<br />Design a DHNN (1)<br />1) Calculate Link-Weight Matrix<br />2) Obtain Attractor<br /> <br />Calculate Link-Weight Matrix:<br /> <br /><br /><br />not non negative defined symmetric.<br /><br /><br />原创 2011-03-15 12:02:00 · 595 阅读 · 0 评论 -
Feedback Nerual Network(四):Design DHNN
<br /><br /> <br /> <br /> <br /><br /><br /><br />Asynchronous Mode:<br /> <br /> <br /><br /><br /><br /><br /> <br /># Conclusion: from above calculation we can see<br />Using different adjusting sequence, x(5) can either weakly converge to x(2) <br />原创 2011-03-15 13:26:00 · 837 阅读 · 0 评论