【贪心算法】经典案例分析

目录

案例一:找零钱 

案例二:活动安排

案例三:单源最短路径


贪心算法(Greedy Algorithm)是一种基于贪心策略的算法设计方法,它在每一步选择中都采取当前状态下最优的选择,以期望达到全局最优解。贪心算法通常适用于那些具有最优子结构性质的问题,即问题的最优解可以通过子问题的最优解来构造。

贪心算法的基本思想可以简单概括为:

  1. 选择策略:在每一步,从所有可选的选择中选择当前看起来最优的那个。

  2. 局部最优:通过选择局部最优解来构建全局最优解。

  3. 无后效性:每一步的选择只依赖于当前状态,不受之后的影响。

尽管贪心算法在许多情况下能够得到高效的解决方案,但它并不适用于所有问题。因为它没有考虑全局的状态,有时可能会导致得到次优解或者根本无法得到解。


案例一:找零钱 

问题:假设你是一个收银员,你需要找给顾客一定数量的零钱。你手上有一些面额不同的硬币(比如1元、5元、10元、20元、50元)。目标是找给顾客最少数量的硬币。

方法

  1. 优先使用大面额的硬币。

  2. 如果顾客需要的金额超过当前最大面额的硬币,就使用一个最大面额的硬币,然后继续往下找零。

  3. 重复上述步骤,直到找完所有需要的零钱。

def give_change(amount, coins):
    coins.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恭仔さん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值