题目
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
题解
const maxProfit = prices => {
const len = prices.length;
// 创建dp数组
const dp = new Array(len).fill([0, 0]);
// dp数组初始化
dp[0] = [-prices[0], 0];//0是持有,1是不持有
for (let i = 1; i < len; i++) {
// 更新dp[i]
dp[i] = [
Math.max(dp[i - 1][0], -prices[i]),//-price[i]是因为只买一次
Math.max(dp[i - 1][1], prices[i] + dp[i - 1][0]),
];
}
return dp[len - 1][1];
};
思路:
-
动态规划:
状态定义:
dp[i][j]:下标为 i 这一天结束的时候,手上持股状态为 j 时,我们持有的现金数。换种说法:dp[i][j] 表示天数 [0, i] 区间里,下标 i 这一天状态为 j 的时候能够获得的最大利润。其中:
- j = 0,表示当前不持股;
- j = 1,表示当前持股。
推导状态转移方程:
dp[i][0]:规定了今天不持股,有以下两种情况:
-
昨天不持股,今天什么都不做;
-
昨天持股,今天卖出股票(现金数增加);
dp[i][1]:规定了今天持股,有以下两种情况:
- 昨天持股,今天什么都不做(现金数与昨天一样);
- 昨天不持股,今天买入股票(注意:只允许交易一次,因此手上的现金数就是当天的股价的相反数)。
-
array.fill
-
const dp = new Array(len).fill([0, 0]);