[LeetCode] Longest Valid Parentheses, Solution

本文介绍了一种算法,用于在给定只包含'('和')'字符的字符串中找到最长的有效括号子串。通过维护一个栈来跟踪可能的左边界,该算法能够高效地解决此问题。

Given a string containing just the characters  '(' and  ')', find the length of the longest valid (well-formed) parentheses substring.
For  "(()", the longest valid parentheses substring is  "()", which has length = 2.
Another example is  ")()())", where the longest valid parentheses substring is  "()()", which has length = 4.

» Solve this problem

[Thoughts]
维护一个栈,每次维护上一个可能的左边际。

[Code]

1:       int longestValidParentheses(string s) {  
2: const char* str = s.c_str();
3: int nMax=0;
4: const char *p = str;
5: vector<const char*> sta;
6: while(*p !='')
7: {
8: if(*p == '(')
9: {
10: sta.push_back(p);
11: }
12: else
13: {
14: if(!sta.empty() && *sta.back()=='(')
15: {
16: sta.pop_back();
17: nMax = max(nMax, p-(sta.empty()?str-1:sta.back()));
18: }
19: else
20: {
21: sta.push_back(p);
22: }
23: }
24: p++;
25: }
26: return nMax;
27: }
基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制方法。通过结合数据驱动技术与Koopman算子理论,将非线性系统动态近似为高维线性系统,进而利用递归神经网络(RNN)建模并实现系统行为的精确预测。文中详细阐述了模型构建流程、线性化策略及在预测控制中的集成应用,并提供了完整的Matlab代码实现,便于科研人员复现实验、优化算法并拓展至其他精密控制系统。该方法有效提升了纳米级定位系统的控制精度与动态响应性能。; 适合人群:具备自动控制、机器学习或信号处理背景,熟悉Matlab编程,从事精密仪器控制、智能制造或先进控制算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①实现非线性动态系统的数据驱动线性化建模;②提升纳米定位平台的轨迹跟踪与预测控制性能;③为高精度控制系统提供可复现的Koopman-RNN融合解决方案; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注Koopman观测矩阵构造、RNN训练流程与模型预测控制器(MPC)的集成方式,鼓励在实际硬件平台上验证并调整参数以适应具体应用场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值