233 Matrix HDU - 5015(矩阵快速幂)

本文详细解析了HDU-5015题目233Matrix的算法实现,通过构建特殊的矩阵并运用递推关系,解决了一个涉及矩阵递归运算的问题。文章提供了完整的代码实现,展示了如何利用矩阵乘法和快速幂优化递归过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

233 Matrix HDU - 5015

 In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333...) Besides, in 233 matrix, we got a i,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,...,a n,0, could you tell me a n,m in the 233 matrix? 

Input
There are multiple test cases. Please process till EOF.

For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).

Output
For each case, output a n,m mod 10000007.
Sample Input

1 1
1
2 2
0 0
3 7
23 47 16

Sample Output

234
2799
72937

Hint

这里写图片描述

题意:

给出矩阵的第0行(233,2333,23333,…)和第0列a1,a2,…an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i][j-1],要求A[n][m]。

分析:

这个题主要是转移矩阵不好写

第一列元素为:

0a1a2a3a4(0a1a2a3a4)

转化为:
23a1a2a3a43(23a1a2a3a43)

则第二列为:

23×10+323×10+3+a123×10+3+a1+a223×10+3+a1+a2+a323×10+3+a1+a2+a3+a43(23×10+323×10+3+a123×10+3+a1+a223×10+3+a1+a2+a323×10+3+a1+a2+a3+a43)

根据前后两列的递推关系有等式可得关系转移矩阵A:

a0,ma1,ma2,ma3,m...an,m3=10       0       0           0     110       1       0           0     110       1       1           0     1.       .       .           .     ..       .       .           .     ..       .       .           .     ..       .       .           .     .10       1       1           1     1 0        0       0           0     1a0,m1a1,m1a2,m1a3,m1...an,m13(112)(112)(a0,ma1,ma2,ma3,m...an,m3)=(10       0       0      ⋯     0     110       1       0      ⋯     0     110       1       1      ⋯     0     1.       .       .      ⋯     .     ..       .       .      ⋯     .     ..       .       .      ⋯     .     ..       .       .      ⋯     .     .10       1       1      ⋯     1     1 0        0       0      ⋯     0     1)(a0,m−1a1,m−1a2,m−1a3,m−1...an,m−13)

code:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 15;
const int mod = 1e7+7;
int b[N];
int n;
struct Matrix{
    ll mat[N][N];
    Matrix operator * (const Matrix &b)const{
        Matrix ans;
        for(int i = 0; i <= n+1; i++){
            for(int j = 0; j <= n+1; j++){
                ans.mat[i][j] = 0;
                for(int k = 0; k <= n+1; k++){
                    if(mat[i][k] && b.mat[k][j]){
                        ans.mat[i][j] += mat[i][k] * b.mat[k][j];
                        ans.mat[i][j] %= mod;
                    }
                }
            }
        }
        return ans;
    }
}a;

Matrix q_pow(Matrix a,int b){
    Matrix ans;
    memset(ans.mat,0,sizeof(ans));
    for(int i = 0; i <= n+1; i++){
        ans.mat[i][i] = 1;
    }
    while(b){
        if(b & 1)
            ans = ans * a;
        b >>= 1;
        a = a * a;
    }
    return ans;
}

void init(){
    b[0] = 23;
    b[n+1] = 3;
    for(int i = 1; i <= n; i++){
        scanf("%d",&b[i]);
    }
    memset(a.mat,0,sizeof(a.mat));
    for(int i = 0; i <= n; i++){
        a.mat[i][0] = 10;
        a.mat[i][n+1] = 1;
    }
    a.mat[n+1][n+1] = 1;
    for(int i = 1; i < n+1; i++){
        for(int j = 1; j <= i; j++){
            a.mat[i][j] = 1;
        }
    }
}
int main(){
    int m;
    while(~scanf("%d%d",&n,&m)){
        init();
        Matrix ans = q_pow(a,m);
        ll s = 0;
        for(int i = 0; i <= n+1; i++){
            s = (s + ans.mat[n][i] * b[i] % mod) % mod;
        }
        printf("%lld\n",s);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值