Gcd(莫比乌斯反演)

Gcd

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input
4

Sample Output
4
Hint

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7
题意:

分析:

和这道题完全一样
只不过不需要优化直接两重for循环枚举素数即可

code:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 1e7+10;
typedef long long LL;

//LL F[MAXN],f[MAXN];
LL pri[MAXN],pri_num;
LL mu[MAXN];//莫比乌斯函数值
bool vis[MAXN];

void mobius(int N)  //筛法求莫比乌斯函数
{
    pri_num = 0;//素数个数
    memset(vis, false, sizeof(vis));
    vis[1] = true;
    mu[1] = 1;
    for(int i = 2; i <=N; i++)
    {
        if(!vis[i])
        {
            pri[pri_num++] = i;
            mu[i] = -1;
        }
        for(int j=0; j<pri_num && i*pri[j]<N ; j++)
        {
            vis[i*pri[j]]=true;//标记非素数
            //eg:i=3,i%2,mu[3*2]=-mu[3]=1;----;i=6,i%5,mu[6*5]=-mu[6]=-1;
            if(i%pri[j])mu[i*pri[j]] = -mu[i];
            else
            {
                mu[i*pri[j]] = 0;
                break;
            }

        }
    }
}

int main()
{
//    freopen("in.txt","r",stdin);
//    freopen("out.txt","w",stdout);
    LL n;
    mobius(10000000);
    while(~scanf("%lld",&n))
    {
        LL ans = (LL)0;
        for(LL i=0; pri[i]<=n; i++)
        {
            for(LL j=1; j<=n/pri[i]; j++)
                ans+=(LL)(mu[j]*((n/pri[i])/j)*((n/pri[i])/j));
        }
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值