Annoying Present(思维题)

探讨了如何通过特定操作最大化数组的平均值,分析了不同参数对最终结果的影响,并提供了一种有效的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Annoying Present

Alice got an array of length n

as a birthday present once again! This is the third year in a row!

And what is more disappointing, it is overwhelmengly boring, filled entirely with zeros. Bob decided to apply some changes to the array to cheer up Alice.

Bob has chosen m
changes of the following form. For some integer numbers x and d, he chooses an arbitrary position i (1≤i≤n) and for every j∈[1,n] adds x+d⋅dist(i,j) to the value of the j-th cell. dist(i,j) is the distance between positions i and j (i.e. dist(i,j)=|i−j|, where |x| is an absolute value of x

).

For example, if Alice currently has an array [2,1,2,2]
and Bob chooses position 3 for x=−1 and d=2 then the array will become [2−1+2⋅2, 1−1+2⋅1, 2−1+2⋅0, 2−1+2⋅1] = [5,2,1,3]. Note that Bob can’t choose position i outside of the array (that is, smaller than 1 or greater than n

).

Alice will be the happiest when the elements of the array are as big as possible. Bob claimed that the arithmetic mean value of the elements will work fine as a metric.

What is the maximum arithmetic mean value Bob can achieve?

Input

The first line contains two integers n

and m (1≤n,m≤105

) — the number of elements of the array and the number of changes.

Each of the next m
lines contains two integers xi and di (−103≤xi,di≤103) — the parameters for the i

-th change.

Output

Print the maximal average arithmetic mean of the elements Bob can achieve.

Your answer is considered correct if its absolute or relative error doesn't exceed 10−6

.

Examples
Input

2 3
-1 3
0 0
-1 -4

Output

-2.500000000000000

Input

3 2
0 2
5 0

Output

7.000000000000000
题意:

给你一个初始大小为n的数组,里面的元素初始全为0,给一个数m代表m次操作,每次操作给定两个数字x,d,要求我我们对每个数组元素aiai执行下面操作:
ai=ai+x+d×|ij|ai=ai+x+d×|i−j|
其中j是我们随机选定的一个固定位置,i从1-n遍历
问每次操作怎么选择这个j可以使得m次操作后n个数字的平均值最大
输出这个最大平均值

分析:

总体思路是算出m次操作后的总和ans,然后再求平均
对于每一次操作我们观察公式

ai=ai+x+d×|ij|ai=ai+x+d×|i−j|

发现x对于数字的最大值改变没有影响,因为每次操作都会加固定的x,那么每次循环开始前,我们就把总和ans先加上n×xn×x即可,接下来我们分析j的影响,即选定位置的影响

  • 当d > 0时:因为d大于零,所以我们为了使后面加的更大,所有就希望|ij||i−j|越大越好,仔细想想我们会发现这些距离无非就是从0….到某个小于等于n-1的数(n个数最大距离n-1,两头距离),所有为了使总的距离和最大我们就应该选择最大距离最大的,所以j应该选择两头的位置,因此总的距离和就是1+2+...+(n1)=n×(n1)21+2+...+(n−1)=n×(n−1)2,然后ans+=n×(n1)2×dans+=n×(n−1)2×d
  • 当d < 0时:同理我们就会希望|ij||i−j|越小越好,根据同样的思想,固定位置j应该选择中间,这样最大的距离才能最小,总的距离和才能最小,在这种情况下就又分成两种情况:
    1.当n为奇数的时候比如1 2 3 4 5,中间位置是3即n+12n+12,所以距离和:

    2×[1+2+...+(n+121)]2×[1+2+...+(n+12−1)]
    =n214n2−14

    ans+=n214×dans+=n2−14×d

    2 .当n为偶数的时候,比如1 2 3 4,中间位置是n2n2,距离和:
    [1+2+...+(n21)]×2+n2[1+2+...+(n2−1)]×2+n2
    =n24n24

    ans+=n24×dans+=n24×d

最后注意,要用long long 最后转成double,否则wa!!
我也没想清楚为啥,希望大家指点
总的来说还是很好的一道思维题

code:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
ll n,m,x,d;
int main(){
    scanf("%lld%lld",&n,&m);
    ll ans = 0;
    while(m--){
        scanf("%lld%lld",&x,&d);
        ans += n * x;
        if(d > 0){
            ans += (n - 1.0) * n / 2.0 * d;
        }
        else if(d < 0){
            if(n & 1){
                ans += (n * n - 1) / 4 * d;
            }
            else{
                ans += n * n / 4 * d;
            }
        }
    }
    printf("%.15f\n",ans*1.0/n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值