C Looooops POJ - 2115(扩展欧几里徳)

本文探讨了如何计算特定C语言循环结构的执行次数,针对给定的循环参数A、B、C及位数k,介绍了如何通过扩展欧几里徳算法解决循环终止条件下的执行次数计算问题。

C Looooops POJ - 2115

A Compiler Mystery: We are given a C-language style for loop of type

for (variable = A; variable != B; variable += C)

  statement;


I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2 k) modulo 2 k.

Input
The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2 k) are the parameters of the loop.

The input is finished by a line containing four zeros.

Output
The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate.
Sample Input

3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0

Sample Output

0
2
32766
FOREVER

根据题意可以得到同余式

A+CxB mod(2k)A+Cx≡B mod(2k)
x是所求次数

所以Cx(BA) mod(2k)Cx≡(B−A) mod(2k)

Cx+2ky=BACx+2ky=B−A
利用扩展欧几里徳求解即可

好不容易自己写了会欧几里徳又他妈wa了好几发
原因是2k2k我用的移位运算
1<<k1<<k
但是1是默认int型,k最大32,会溢出
所以要转换格式,应写成
1LL<<k1LL<<k
FUCK!FUCK!
以后移位运算一定得注意!!!
code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll A,B,C,k;
ll ex_gcd(ll a,ll b,ll &x,ll &y){
    if(b == 0){
        x = 1;
        y = 0;
        return a;
    }
    ll gcd = ex_gcd(b,a%b,y,x);
    y -= a / b * x;
    return gcd;
}
int main(){
    while(scanf("%lld%lld%lld%lld",&A,&B,&C,&k) != EOF){
        if(A == 0 && B == 0 && C == 0 && k == 0) break;
        ll a = C;
        ll b = 1LL << k;
        ll c = B - A;
        ll x,y;
        ll gcd = ex_gcd(a,b,x,y);
        if(c % gcd){
            printf("FOREVER\n");
            continue;
        }
        x *= c/gcd;
        b /= gcd;
        if(b < 0) b = -b;
        ll ans = x % b;
        if(ans < 0) ans += b;
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值