Wand
FZU - 2282N wizards are attending a meeting. Everyone has his own magic wand. N magic wands was put in a line, numbered from 1 to n(Wand_i owned by wizard_i). After the meeting, n wizards will take a wand one by one in the order of 1 to n. A boring wizard decided to reorder the wands. He is wondering how many ways to reorder the wands so that at least k wizards can get his own wand.
For example, n=3. Initially, the wands are w1 w2 w3. After reordering, the wands become w2 w1 w3. So, wizard 1 will take w2, wizard 2 will take w1, wizard 3 will take w3, only wizard 3 get his own wand.
Input
First line contains an integer T (1 ≤ T ≤ 10), represents there are T test cases.
For each test case: Two number n and k.
1<=n <=10000.1<=k<=100. k<=n.
For each test case, output the answer mod 1000000007(10^9 + 7).
2 1 1 3 1Sample Output
1 4
code:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn = 1e4+10;
const int MOD = 1000000007;
ll dp[maxn];
ll fac[maxn];
void getdp(){
dp[1] = 0ll;
dp[2] = 1ll;
fac[0] = 1ll;
fac[1] = 1ll;
fac[2] = 2ll;
for(int i = 3; i <= 10000; i++){
dp[i] = (ll)(i - 1) * (dp[i-1] + dp[i-2]) % MOD;//求错排和阶乘
fac[i] = (fac[i-1] * i) % MOD;
}
}
ll q_pow(ll a,ll b){
ll ans = 1ll;
while(b){
if(b & 1)
ans = ans * a % MOD;
b >>= 1;
a = a * a % MOD;
}
return ans % MOD;
}
ll C(ll n,ll k){
if(n < k)
return 0;
if(k > n - k){
k = n - k;
}
ll a = 1ll,b = 1ll;
for(int i = 1; i <= k; i++){
a = a * (n - i + 1) % MOD;
b = b * i % MOD;
}
return a * q_pow(b,MOD-2) % MOD;//求逆元,组合数取模
}
int main(){
getdp();
int T;
scanf("%d",&T);
while(T--){
int n,k;
scanf("%d%d",&n,&k);
ll ans = 0ll;
for(int i = 0; i < k; i++){
ans = (ans + (C((ll)n,(ll)i) * dp[n-i]) % MOD) % MOD;
}
printf("%lld\n",(MOD+(fac[n]-ans))%MOD);//注意这里需要加上mod防止变成负数,得到最小正整数解
}
return 0;
}
本文介绍了一种解决错排问题的有效算法,通过计算特定数量的法师在拿取魔法杖时至少有k个法师能拿到自己原来的魔法杖的方法数。利用递推公式预处理错排方案数,并结合组合数学原理计算总方案数。
&spm=1001.2101.3001.5002&articleId=79834986&d=1&t=3&u=285aef789f9a437f8cdeffbc5791b582)
316

被折叠的 条评论
为什么被折叠?



