3的幂的和 51Nod - 1013(快速幂+等比数列求和+逆元)

本文介绍了一种解决3的幂的和问题的方法,并详细解释了如何使用快速幂取模和求逆元来计算3^0+3^1+...+3^(N) mod 1000000007的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


求:3^0 + 3^1 +...+ 3^(N) mod 1000000007


Input 输入一个数N(0 <= N <= 10^9) Output 输出:计算结果 Sample Input
3
Sample Output
40

思路:一开始都想到了用等比数列公式再加上一个快速幂取模求结果,但是提交上去就一直wa,后来听说要求逆元,但是还是不明白为什么要求逆元,虽然我知道取模的等介变形中没有除法,但是我当时想,我没想等介变形啊,我就想用个最终结果取模,咋就不一样呢,后来终于发现,(q^(n+1)-1)/2这个式子中,q^(n+1)的结果是用快速幂取模算的,所以这个结果就已经无意识的取模了,也就是说,我们已经无意识的把取模给除法分配进去了,但是除法又没有取模分配,所以只能变成乘逆元,至于如果求逆元,用费马小定理即可

code:

#include <iostream>
using namespace std;
typedef long long ll;
ll q_pow(ll a,ll b){
    ll ans = 1;
    while(b){
        if(b&1)
            ans = ans*a%1000000007;
        b >>= 1;
        a = a*a%1000000007;
    }
    return ans%1000000007;
}//快速幂取模
ll getReverse(ll a){
    return q_pow(a,1000000005);
}//费马小定理求逆元
int main(){
    ll n;
    cin >> n;
    n++;
    ll ans = (q_pow(3,n)-1)*getReverse(2)%1000000007;
    cout << ans << endl;
    return 0;
}


### 关于51Nod 3100 上台阶问题的C++解法 #### 题目解析 该题目通常涉及斐波那契数列的应用。假设每次可以走一步或者两步,那么到达第 \( n \) 层台阶的方法总数等于到达第 \( n-1 \)第 \( n-2 \) 层方法数之。 此逻辑可以通过动态规划来解决,并且为了防止数值过大,需要对结果取模操作(如 \( \% 100003 \)[^1])。以下是基于上述思路的一个高效实现: ```cpp #include <iostream> using namespace std; const int MOD = 100003; long long f[100010]; int main() { int n; cin >> n; // 初始化前两项 f[0] = 1; // 到达第0层有1种方式(不移动) f[1] = 1; // 到达第1层只有1种方式 // 动态规划计算f[i] for (int i = 2; i <= n; ++i) { f[i] = (f[i - 1] + f[i - 2]) % MOD; } cout << f[n] << endl; return 0; } ``` 以上代码通过数组 `f` 存储每层台阶的结果,利用循环逐步填充至目标层数 \( n \),并最终输出结果。 --- #### 时间复杂度分析 由于仅需一次线性遍历即可完成所有状态转移,时间复杂度为 \( O(n) \)。空间复杂度同样为 \( O(n) \),但如果优化存储,则可进一步降低到 \( O(1) \): ```cpp #include <iostream> using namespace std; const int MOD = 100003; int main() { int n; cin >> n; long long prev2 = 1, prev1 = 1, current; if (n == 0 || n == 1) { cout << 1 << endl; return 0; } for (int i = 2; i <= n; ++i) { current = (prev1 + prev2) % MOD; prev2 = prev1; prev1 = current; } cout << prev1 << endl; return 0; } ``` 在此版本中,只保留最近两个状态变量 (`prev1`, `prev2`) 来更新当前值,从而节省内存开销。 --- #### 输入输出说明 输入部分接受单个整数 \( n \),表示台阶数量;程序会返回从地面走到第 \( n \) 层的不同路径数目,结果经过指定模运算处理以适应大范围数据需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值