1013 Battle Over Cities (25 point(s))

在战争背景下,确保城市间高速公路连通至关重要。本文介绍了一种算法,用于快速计算若某城市被敌方占领,需要修复多少条高速公路以保持剩余城市间的连接。通过并查集和连通分支数的概念,文章提供了一个示例输入输出,并详细解释了处理步骤。

1013 Battle Over Cities (25 point(s))

It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.

For example, if we have 3 cities and 2 highways connecting city​1​​-city​2​​ and city​1​​-city​3​​. Then if city​1​​ is occupied by the enemy, we must have 1 highway repaired, that is the highway city​2​​-city​3​​.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.

Output Specification:

For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.

Sample Input:

3 2 3
1 2
1 3
1 2 3

Sample Output:

1
0
0

思考:

题意:城市和高速公路构成带权无向图,现在去掉一些城市,其删点子图需要多少条道路使得相互连通。

知识点:并查集,连通分支数

注意点:

(1)findRoot(x)函数;

(2)由于有多个提问,因此需要存储所有高速公路端点(玄学TLE);

(3)注意需要对于删点子图的处理,即遇到该城市(点)或者包含该城市的高速公路(边)都要跳过;

(4)最终需要新修建连通分支数-1条道路。

#include<iostream>
#include<vector>
#include<string>
using namespace std;
const int MAX = 1e3+7;
int Tree[MAX];
int findRoot(int x){
	if(Tree[x]==-1) return x;
	else{
		int temp = findRoot(Tree[x]);
		Tree[x] = temp;
		return temp;
	}
}
struct highway{
	int a,b;
}; 
int main(void){
	int N,M,K;//cities,highways,to be checked
	cin>>N>>M>>K;
	vector<highway> p;
	highway hw;
	for(int i=0;i<M;i++){
		cin>>hw.a>>hw.b;
		p.push_back(hw);
	}
	int t;// what we concern?
	for(int k=0;k<K;k++){
		cin>>t;
		for(int i=1;i<=N;i++) Tree[i]=-1;
		for(int i=0;i<M;i++){
			int c1 = p[i].a;
			int c2 = p[i].b;
			if(c1==t||c2==t) continue;
			c1 = findRoot(c1);
			c2 = findRoot(c2);
			if(c1!=c2){
				Tree[c1]=c2;
			} 
		}
		int branch=0;
		for(int i=1;i<=N;i++){
			if(i==t) continue;
			if(Tree[i]==-1) branch++;
		}
		cout<<branch-1<<endl;
	} 
	return 0;
}

 

【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析(Python代码实现)内容概要:本文围绕“并_离网风光互补制氢合成氨系统容量-调度优化分析”的主题,提供了基于Python代码实现的技术研究与复现方法。通过构建风能、太阳能互补的可再生能源系统模型,结合电解水制氢与合成氨工艺流程,对系统的容量配置与运行调度进行联合优化分析。利用优化算法求解系统在不同运行模式下的最优容量配比和调度策略,兼顾经济性、能效性和稳定性,适用于并网与离网两种场景。文中强调通过代码实践完成系统建模、约束设定、目标函数设计及求解过程,帮助读者掌握综合能源系统优化的核心方法。; 适合人群:具备一定Python编程基础和能源系统背景的研究生、科研人员及工程技术人员,尤其适合从事可再生能源、氢能、综合能源系统优化等相关领域的从业者;; 使用场景及目标:①用于教学与科研中对风光制氢合成氨系统的建模与优化训练;②支撑实际项目中对多能互补系统容量规划与调度策略的设计与验证;③帮助理解优化算法在能源系统中的应用逻辑与实现路径;; 阅读建议:建议读者结合文中提供的Python代码进行逐模块调试与运行,配合文档说明深入理解模型构建细节,重点关注目标函数设计、约束条件设置及求解器调用方式,同时可对比Matlab版本实现以拓宽工具应用视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值