Machine learning series:How to handle categorical variable

本文深入探讨了One-Hot编码的原理与应用,通过实际案例展示了如何使用pandas和scikit-learn进行One-Hot编码,确保训练和测试数据的一致性。同时,介绍了One-Hot编码在深度学习和文本处理中的作用,以及面对大量类别值时的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

One hot encoding

one hot encoding creates new (binary) columns, indicating the presence of each possible value from the original data.

## explore the data type
print(train_data.dtypes)
## one hot encoding
one_hot_encoding_train_predictors = pd.get_dummies(train_predictors)

Scikit-learn is sensitive to the ordering of columns, so if a categorial has a different number of values in the training data vs the test data, the results will be nonsense.

To ensure the test data is encoded in the same manner as the training data with the align command:

one_hot_encoded_train_predictors = pd.get_dummies(train_predictors)
one_hot_encoded_test_predictors = pd.get_dummies(test_predictors)
final_train, final_test = one_hot_encoded_training_predictors.align(one_hot_encoded_test_predictors, join='left', axis=1)

## join = 'left': do the equivalent of SQL's left join.

Further learning

Pipelines: scikit-learn offer a class for one hot encoding, and this can be added to a pipeline.
Applications To Text for Deep Learning: Keras and TensorFlow have fuctionality for one-hot encoding, which is useful for working with text.

Categoricals with Many Values: Scikit-learn’s FeatureHasher uses the hashing trick to store high-dimensional data. This will add some complexity to your modeling code.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值