Error Analysis

本文介绍了实验测量中的误差类型,包括系统误差与随机误差,并详细解释了精度与准确性的概念。文中还介绍了如何通过计算平均值和标准差来评估数据的分散情况,并提供了具体的计算步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Error Analysis

[1] “Generally, errors can be divided into two broad and rough but useful classes: systematic and random.”

[2]As mentioned above, there are two types of errors associated with an experimental result: the “precision” and the “accuracy”. One well-known text explains the difference this way:

[2]The word “precision” will be related to the random error distribution associated with a particular experiment or even with a particular type of experiment. The word “accuracy” shall be related to the existence of systematic errors—differences between laboratories, for instance. For example, one could perform very precise but inaccurate timing with a high-quality pendulum clock that had the pendulum set at not quite the right length. E.M. Pugh and G.H. Winslow, p. 6.

Mean Value

Supposed there are N measurements of same response quantity, x.

x1,x2,,xN

If the errors were random then the errors in these results would differ in sign and magnitude.

mean value of the measurements

x¯=xiN

some of the random variations coulde be expected to cancle out with others in the sum.
[1] This the best can be done to deal with random errors: repeat the measurement many times,
varying as many irrelevant parametes as possible and use the average as the best estimate of the true value of x . Mean value should gives you a result with less error than any other of the individual measurements.

Standard Deviation

It means the most probable value of a Gaussian distribution.

σx=(xix¯)2N1

[1]”The true mean value of x is not being used to calculate the variance, but only the average of the measurements as the best estimate of the true mean value” (xix¯)2 is alwayse a little bit smaller than (xix¯true)2 . In theory of probability (using the assumption that the data has a Gaussian distribution),it can be shown that this underestimate is corrected by using N1 instead of N .

Error Calculation Process[3]

1) Calculate the mean (total of all samples divided by the number of samples)
2) Calculate each response’s deviation from the mean ( mean minus the individual measurement)
3) Square each deviation from the mean
4) Sum the square deviation
5) Divide square deviation sum by one less than the sample size
6) Take the square root of the number in step 5, and the result is standard deviation.
7) Divide the standard deviation by the square root of the sample size, and it is the standard error.

ID Response Devriation Square
1 10.1 0.1 0.01
2 10.3 -0.1 0.01
3 10.2 0.0 0.0
n=3 mean = 10.2 0.02

0.02/(31)=0.01

standarddeviation=0.01=0.1

SE=0.1/3=0.577

10.2±0.577

[1] http://teacher.nsrl.rochester.edu/phy_labs/AppendixB/AppendixB.html
[2] https://reference.wolfram.com/applications/eda/ExperimentalErrorsAndErrorAnalysis.html
[3] http://www.runet.edu/~biol-web/stats/standarderrorcalc.pdf

### 雷达干涉测量数据解释技术 雷达干涉测量利用合成孔径雷达(SAR)获取同一区域的两幅或多幅图像之间的相位差来提取地形高度或其他物理参数的信息。对于InSAR(Interferometric Synthetic Aperture Radar)而言,其核心在于通过处理两个或多个时间上接近但存在微小基线差异的复数影像对得到干涉图(interferogram),进而反演地表形变场或者高程模型。 为了有效解析这些复杂的信号,在实际应用中通常会采用一系列高级算法和技术: - **相干性估计**:这是衡量两次观测之间目标反射特性变化程度的一个重要指标。较高的相干性能提供更可靠的干涉条纹信息[^1]。 - **去噪和平滑滤波器的应用**:由于大气效应、轨道误差等因素的影响,原始干涉图往往含有噪声成分。因此需要运用特定的空间域/频率域滤波手段去除不必要的干扰项并保留有效的地理特征[^2]。 - **多视处理(Multilook Processing)**:通过对单个像素周围的邻近点取平均值可以减少随机性的影响从而提高信噪比;然而这样做也会降低空间分辨率。所以要权衡两者间的关系以达到最佳效果。 ### 错误分析方法 针对由各种因素引起的潜在偏差,研究者们开发出了多种校正策略用于改善最终产品的质量: - **几何畸变改正**:考虑到卫星姿态角的变化以及地球曲率造成的视角偏移等问题,必须实施精确的姿态控制和严格的几何配准流程确保不同时间段所采集到的数据能够良好匹配。 - **大气延迟补偿**:湿干空气层厚度不均会导致电磁波传播路径延长形成额外的时间滞后现象即所谓的“大气延迟”。为此可以通过引入外部气象资料辅助建模或是基于双频观测模式下的经验关系来进行修正操作。 - **轨道精化(Orbit Refinement)**:即使是在精密定轨条件下仍可能存在毫米级甚至亚毫米级别的位置漂移情况。借助于地面跟踪站网络提供的实时监测反馈不断优化预测轨迹有助于减小此类不确定性带来的负面影响。 ```python def correct_orbital_drift(position_data, tracking_stations_feedback): """ Corrects orbital drift based on feedback from ground stations. Args: position_data (list): List of satellite positions over time. tracking_stations_feedback (dict): Feedback dictionary with corrections. Returns: list: Refined satellite positions after applying corrections. """ refined_positions = [] for pos in position_data: correction_vector = tracking_stations_feedback.get(pos.timestamp, [0, 0, 0]) corrected_pos = [ p + c for p, c in zip(pos.coordinates, correction_vector)] refined_positions.append(corrected_pos) return refined_positions ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值