A sequence of numbers is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.
For example, these are arithmetic sequences:
1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, -5, -9
The following sequence is not arithmetic.
1, 1, 2, 5, 7
A zero-indexed array A consisting of N numbers is given. A subsequence slice of that array is any sequence of integers (P0, P1, ..., Pk) such that 0 ≤ P0< P1 < ... < Pk < N.
A subsequence slice (P0, P1, ..., Pk) of array A is called arithmetic if the sequence A[P0], A[P1], ..., A[Pk-1], A[Pk] is arithmetic. In particular, this means that k ≥ 2.
The function should return the number of arithmetic subsequence slices in the array A.
The input contains N integers. Every integer is in the range of -231 and 231-1 and 0 ≤ N ≤ 1000. The output is guaranteed to be less than 231-1.
Example:
Input: [2, 4, 6, 8, 10] Output: 7 Explanation: All arithmetic subsequence slices are: [2,4,6] [4,6,8] [6,8,10] [2,4,6,8] [4,6,8,10] [2,4,6,8,10] [2,6,10]
这道题我想的太复杂了。
解法1.0:
这里set中装的是等差数列首元素的序号和末元素的序号,因为用了set所以可以避免重复序列,但是只能避免首尾元素重复,不能避免中间元素重复;
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& A)
{
if(A.size() < 3) return 0 ;
int res = 0 ;
map<long , set<pair<int,int>>> m ;
for(int i = 2 ; i < A.size() ; ++i)
{
map<long, set<pair<int, int>>> tmp ;
for(int j = 0 ; j < i - 1 ; ++j)
for(int k = j + 1 ; k < i ; ++k)
{
if( A[j] <= A[k] && A[k] <= A[i] && (long)A[j] + (long)A[i] == 2 * (long)A[k]) tmp[(long)A[k] - (long)A[j]].insert({j , i}) ;
else if(A[i] <= A[j] && A[j] <= A[k] && (long)A[i] + (long)A[k] == 2 * (long)A[j]) tmp[(long)A[j] - (long)A[i]].insert({i , k}) ;
else if(A[k] <= A[j] && A[j] <= A[i] && (long)A[i] + (long)A[k] == 2 * (long)A[j]) tmp[(long)A[j] - (long)A[k]].insert({k , i}) ;
else if(A[i] <= A[k] && A[k] <= A[j] && (long)A[i] + (long)A[j] == 2 * (long)A[k]) tmp[(long)A[k] - (long)A[i]].insert({i , j}) ;
else if(A[j] <= A[i] && A[i] <= A[k] && (long)A[j] + (long)A[k] == 2 * (long)A[i]) tmp[(long)A[i] - (long)A[j]].insert({j , k}) ;
else if(A[k] <= A[i] && A[i] <= A[j] && (long)A[k] + (long)A[j] == 2 * (long)A[i]) tmp[(long)A[i] - (long)A[k]].insert({k , j}) ;
}
for(auto itbm = m.begin() ; itbm != m.end() ; itbm++)
{
int diff = itbm->first ;
for(auto itbs = itbm->second.begin() ; itbs != itbm->second.end() ; itbs++)
{
tmp[diff].insert(*itbs) ;
if((long)A[i] - (long)A[itbs->second] == diff )
{
tmp[diff].insert({itbs->first , i}) ;
}
else if((long)A[itbs->first] - (long)A[i] == diff)
{
tmp[diff].insert({i , itbs->second}) ;
}
}
}
m = tmp ;
}
for(auto itbm = m.begin() ; itbm != m.end() ; itbm++)
{
res += itbm->second.size() ;
}
return res ;
}
};
解法1.1:
所以用set装等差数列的全部序号,但是时间复杂度达到O(N^3),TLE了,其实这种解不TLE也会MLE的;
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& A)
{
if(A.size() < 3) return 0 ;
int res = 0 ;
map<long , set<vector<int>>> m ;
for(int i = 2 ; i < A.size() ; ++i)
{
map<long, set<vector<int>>> tmp ;
for(int j = 0 ; j < i - 1 ; ++j)
for(int k = j + 1 ; k < i ; ++k)
{
if( A[j] <= A[k] && A[k] <= A[i] && (long)A[j] + (long)A[i] == 2 * (long)A[k]) tmp[(long)A[k] - (long)A[j]].insert({j , k , i}) ;
else if(A[i] <= A[j] && A[j] <= A[k] && (long)A[i] + (long)A[k] == 2 * (long)A[j]) tmp[(long)A[j] - (long)A[i]].insert({i , j , k}) ;
else if(A[k] <= A[j] && A[j] <= A[i] && (long)A[i] + (long)A[k] == 2 * (long)A[j]) tmp[(long)A[j] - (long)A[k]].insert({k , j , i}) ;
else if(A[i] <= A[k] && A[k] <= A[j] && (long)A[i] + (long)A[j] == 2 * (long)A[k]) tmp[(long)A[k] - (long)A[i]].insert({i , k , j}) ;
else if(A[j] <= A[i] && A[i] <= A[k] && (long)A[j] + (long)A[k] == 2 * (long)A[i]) tmp[(long)A[i] - (long)A[j]].insert({j , i , k}) ;
else if(A[k] <= A[i] && A[i] <= A[j] && (long)A[k] + (long)A[j] == 2 * (long)A[i]) tmp[(long)A[i] - (long)A[k]].insert({k , i , j}) ;
}
for(auto itbm = m.begin() ; itbm != m.end() ; itbm++)
{
int diff = itbm->first ;
for(auto itbs = itbm->second.begin() ; itbs != itbm->second.end() ; itbs++)
{
tmp[diff].insert(*itbs) ;
vector<int> v = *itbs ;
if((long)A[i] - (long)A[v.back()] == diff )
{
v.push_back(i) ;
tmp[diff].insert(v) ;
}
else if((long)A[v[0]] - (long)A[i] == diff)
{
v.insert(v.begin() , i) ;
tmp[diff].insert(v) ;
}
}
}
m = tmp ;
}
for(auto itbm = m.begin() ; itbm != m.end() ; itbm++)
{
res += itbm->second.size() ;
}
return res ;
}
};
解法2.0:
dp[i]是一个hashmap,m[i] = j ; i 指的是以A[i]为最后一个元素的等差数列中的差值; j指的是以A[i]为最后一个元素的等差数列的个数(元素个数>=3) + 1; 1指的是以A[i]为最后一个元素的等差数列(元素个数为2),当下一个有相同差值的元素可以组成元素个数为3的等差数列;
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& A)
{
if(A.size() < 3) return 0 ;
int res = 0 ;
vector<map<long,int>> dp(A.size()) ;
for(int i = 1 ; i < A.size() ; ++i)
{
for(int j = 0 ; j < i ; ++j)
{
long diff = (long)A[i] - (long)A[j] ;
if(diff > INT_MAX || diff < INT_MIN) continue ;
dp[i][diff]++ ;
if(dp[j].count(diff))
{
res += dp[j][diff] ;
dp[i][diff] += dp[j][diff] ;
}
}
}
return res ;
}
};