自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 资源 (5)
  • 收藏
  • 关注

原创 RNN 网络结构及训练过程简介

本文通过整理李宏毅老师的机器学习教程的内容,简要介绍 RNN(recurrent neural network)的网络结构及训练过程。

2023-11-25 23:44:42 1497 1

原创 CNN 网络结构简介

本文通过整理李宏毅老师的机器学习教程的内容,介绍 CNN(卷积神经网络)的网络结构。

2023-10-26 18:57:59 1096

原创 反向传播法(backpropagation)的基本原理

本文通过整理李宏毅老师的机器学习教程的内容,介绍神经网络中用于更新参数的反向传播法(backpropagation)的基本原理。

2023-10-25 16:57:53 539

原创 actor-critic 相关算法简述

asynchronous advantage actor-critic(A3C);pathwise derivative policy gradient;actor-critic 与 GAN 的关系

2022-03-15 22:17:16 2527

原创 DQN(deep Q-network)算法简述

基本概念;进阶技巧;连续动作的场景

2022-03-11 18:00:14 52161

原创 近端策略优化(proximal policy optimization)算法简述

本文通过整理李宏毅老师的机器学习教程的内容,简要介绍深度强化学习(deep reinforcement learning)中的近端策略优化算法(proximal policy optimization)。

2022-02-26 20:20:18 8572 1

原创 策略梯度法(policy gradient)算法简述

本文通过整理李宏毅老师的机器学习教程的内容,简要介绍深度强化学习(deep reinforcement learning)中的策略梯度法(policy gradient)。

2022-01-16 22:31:10 7146 2

Certificates of Primal or Dual Infeasibility.pdf

In this work we present a definition of a basis certificate and develop a strongly polynomial algorithm which given a Farkas type certificate of infeasibility computes a basis certificate of infeasibility.

2020-10-16

leaflet.pdf

R语言的leaflet包使用说明,可用于以地图为背景的经纬度位置的可视化 注:本文件只含有leaflet的使用说明,不含leaflet.extra的使用说明

2020-06-17

leaflet.extras.pdf

R语言的leaflet包使用说明,可用于以地图为背景的热力图绘制 注:本文件只含有leaflet包的额外功能,而非基本功能,如只需基本功能的说明,请查询leaflet.pdf

2020-06-17

2017, Sean J. Taylor, Benjamin Letham, Forecasting at Scale.pdf

Forecasting is a common data science task that helps organizations with capacity planning, goal setting, and anomaly detection. Despite its importance, there are serious challenges associated with producing reliable and high quality forecasts - especially when there are a variety of time series and analysts with expertise in time series modeling are relatively rare. To address these challenges, we describe a practical approach to forecasting "at scale" that combines configurable models with analyst-in-the-loop performance analysis. We propose a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series. We describe performance analyses to compare and evaluate forecasting procedures, and automatically flag forecasts for manual review and adjustment. Tools that help analysts to use their expertise most effectively enable reliable, practical forecasting of business time series.

2021-03-17

self-attention 讲义, 李宏毅, 2021

李宏毅老师的 2021 年机器学习课程讲义:self-attention 课程链接: https://www.bilibili.com/video/BV1Wv411h7kN?p=38 https://www.bilibili.com/video/BV1Wv411h7kN?p=39

2023-11-27

transformer 讲义, 李宏毅, 2021

李宏毅老师的 2021 年机器学习课程讲义:transformer 课程链接: https://www.bilibili.com/video/BV1Wv411h7kN?p=49 https://www.bilibili.com/video/BV1Wv411h7kN?p=50

2023-11-27

CNN 讲义, 李宏毅, 2021

李宏毅老师的 2021 年机器学习课程讲义:CNN(卷积神经网络)

2023-11-01

p-hacking paper

2011, False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant

2023-07-16

Honey Bee Swarm algorithm paper

2005, An Idea Based on Honey Bee Swarm for Numerical Optimization

2023-07-16

Farkas alternative and Duality Theorem.pdf

线性规划中,原问题与对偶问题的可行性分析 This set of notes proves one such theorem, called the Farkas alternative and shows that, in fact, it underpins all the duality theory of linear programming. It underlies, in fact, most of optimisaiton, itself being a particular case of the Separating Hyperplane Theorem.

2020-07-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除