回归算法———逻辑回归

本文深入探讨了逻辑回归模型,作为线性回归的扩展,用于处理分类问题。通过介绍线性回归的局限性和逻辑回归的优势,展示了如何通过极大似然估计构建逻辑回归模型。逻辑回归通过sigmoid函数限制预测值在[0,1]之间,提高了模型的鲁棒性。此外,还讨论了逻辑回归的梯度下降法求解过程以及其在实际应用中的优点和不足,如预测准确性、模型解释性、概率输出和对多重共线性的敏感性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归是一种极易理解的模型,就相当于y=f(x),表明自变量x与因变量y的关系。最常见问题有如医生治病时的望、闻、问、切,之后判定病人是否生病或生了什么病,其中的望闻问切就是获取自变量x,即特征数据,判断是否生病就相当于获取因变量y,即预测分类。

逻辑回归模型

最简单的回归是线性回归,在此借用Andrew NG的讲义,有如图1.a所示,X为数据点——肿瘤的大小,Y为观测值——是否是恶性肿瘤。通过构建线性回归模型,如hθ(x)所示,构建线性回归模型后,即可以根据肿瘤大小,预测是否为恶性肿瘤hθ(x)≥.05为恶性,hθ(x)<0.5为良性。

136abd57a5d043878044b0ef0349f22f.gif

 线性回归示例图

然而线性回归的鲁棒性很差,例如在图1.b的数据集上建立回归,因最右边噪点的存在,使回归模型在训练集上表现都很差。这主要是由于线性回归在整个实数域内敏感度一致,而分类范围,需要在[0,1]。逻辑回归就是一种减小预测范围,将预测值限定为[0,1]间的一种回归模型,其回归方程与回归曲线如图2所示。逻辑曲线在z=0时,十分敏感,在z>>0或z<<0处,都不敏感,将预测值限定为(0,1)。

a64c0835c1b242a1ac198f71da6e3f7e.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值