【jzoj3839】【bzoj4423】【AMPPZ 2013 baj】【Bytehattan】【Babystep】【平面图转对偶图】

本文介绍了一种在线判断网格图删除一条边后是否保持连通性的算法。通过使用并查集和平面图转对偶图的方法,解决网格图中删除特定边后的连通性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意

给出一个网格图,求删除一条相邻的边后是否连通,强制在线。

解题思路

黑圈表示原图的方格,绿边表示原边,紫边表示删除这些边,红边表示当前要删除的边,我们发现如果我们想要添加的紫边会和原来的紫边构成环,这样割掉红边以后一定产生新的连通块。
我们把紫边的交点当作新点,这样就转换成并查集问题,平面图转对偶图。

这里写图片描述

code

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define min(a,b) ((a<b)?a:b)
#define max(a,b) ((a>b)?a:b)
#define fo(i,j,k) for(int i=j;i<=k;i++)
#define fd(i,j,k) for(int i=j;i>=k;i--)
using namespace std;
int const maxn=500,inf=1e9;
int r,n,x[2],y[2],xx[2],yy[2],fa[maxn*maxn+10],num[maxn+10][maxn+10],map[maxn+10][maxn+10][10];
int v;char ch;
int read(){
    for(ch=getchar();(ch<'0')||(ch>'9');ch=getchar());
    for(v=0;(ch>='0')&&(ch<='9');v=v*10+ch-'0',ch=getchar());
    return v;
}
int getfa(int x){
    if(!fa[x])return x;
    return fa[x]=getfa(fa[x]);
}
int fax,fay;
void connect(int x,int y){
    fax=getfa(x),fay=getfa(y);
    if(fax!=fay)fa[fax]=fay;
}
bool diff(int x,int y){
    fax=getfa(x),fay=getfa(y);
    return fax!=fay;
}
int main(){
    freopen("d.in","r",stdin);
    freopen("d.out","w",stdout);
    r=read();n=read();int last=0;
    fo(i,0,r)num[i][0]=num[i][r]=r*r+1;
    fo(j,0,r)num[0][j]=num[r][j]=r*r+1;
    fo(i,1,r-1)fo(j,1,r-1)num[i][j]=(i-1)*r+j;
    x[last]=read();y[last]=read();xx[last]=read();yy[last]=read();
    if(x[last]>xx[last])swap(x[last],xx[last]);
    if(y[last]>yy[last])swap(y[last],yy[last]);
    if(x[last]==xx[last])map[x[last]][y[last]][0]=1,connect(num[x[last]-1][y[last]],num[x[last]][y[last]]);
    if(y[last]==yy[last])map[x[last]][y[last]][1]=1,connect(num[x[last]][y[last]-1],num[x[last]][y[last]]);
    printf("HAHA\n");
    fo(i,2,n){
        fo(j,0,1)x[j]=read(),y[j]=read(),xx[j]=read(),yy[j]=read();
        if(x[last]>xx[last])swap(x[last],xx[last]);
        if(y[last]>yy[last])swap(y[last],yy[last]);int now;
        if(x[last]==xx[last])now=(!diff(num[x[last]-1][y[last]],num[x[last]][y[last]]))||(0);
        if(y[last]==yy[last])now=(!diff(num[x[last]][y[last]-1],num[x[last]][y[last]]))||(0);
        if(now)printf("DAJIA\n");
        else printf("HAHA\n");
        if(x[last]==xx[last])map[x[last]][y[last]][0]=1,connect(num[x[last]-1][y[last]],num[x[last]][y[last]]);
        if(y[last]==yy[last])map[x[last]][y[last]][1]=1,connect(num[x[last]][y[last]-1],num[x[last]][y[last]]);
        last=now;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值