[Paper note] Feature Pyramid Networks for Object Detection

本文介绍了一种用于目标检测的特征金字塔网络(FPN),该方法通过在网络中进行多尺度操作来提高检测精度。FPN利用了卷积神经网络各层级的特征,并通过最近邻上采样融合不同分辨率的特征图。实验表明,FPN在COCO数据集上的表现超越了2016年的冠军方案。

Intuition

  • Multi-scale is important in traditional methods
  • Current detection system use single shot CNN to save time and memory (Faster R-CNN)
  • CNN is capable of representing higher-level semantics, but not all levels are semantically strong
  • Single Shot Detector (SSD) is one of the first attempts at using ConvNet’s pyramidal feature, but they add new layers after high up layer, which may lose information in high-resolution feature map
  • Main contribution: perform multi-scale in the network

Model

  • Feature Pyramid Network (FPN) building block
    • FPN block
    • The feature maps in the picture above are from the last layer of each stage in ConvNet
    • Nearest neighbor upsampling
    • Denotes final set of feature maps as {P2,P3,P4,P5} , corresponding to {C2,C3,C4,C5}
  • FPN in Region Proposal Network (RPN)
    • Replacing single-scale feature map with FPN
    • Anchors with different aspect ratios: 1:2, 1:1, 2:1
    • 15 anchors over the pyramid
  • FPN in Fast R-CNN

Experiment

  • Evaluate on COCO minival set
  • Surpass 2016 COCO winner
  • Lateral and top-down connection is helpful
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值