Intuition
- Re-id method: single-image representation (SIR) and cross-image representation (CIR).
- Combine them together!
Method
- SIR measurements are special cases of CIR-based classification.
- SIR(Euclidean distance): SSIR(xi,xj)=||f(xi)−f(xj)||22
- CIR: SCIR(xi,xj)=wTg(xi,xj)−b
- Also combine pairwise loss and triplet loss.
- Pairwise
LPSIR=∑i,j[1+hij(||f(xi)−f(xj)||22−bSIR)]+
LPCIR=αP2||w||22+∑i,j[1+hij(wTg(xi,xj)−bSIR)]+
where bSIR,bCIR is the distance threshold (margin), αP is the trade-off parameter, which is set to 0.0005 in the experiments
Combine: LP=LPSIR+ηPLPCIR - Triplet
LTSIR=∑i,j,k[bSIR−||f(xi)−f(xk)||22+||f(xi)−f(xj)||22)]+
LTCIR=αP2||w||22+∑i,j,k[bCIR+wTg(xi,xk)−wTg(xi,xj)]+
Combine: LT=LTSIR+ηTLTCIR
- Pairwise
- Compute cross-image feature map
φr(xi,xj)=max(0,br+∑qkq,r∗ϕq(xi)+lq,r∗ϕq(xj))
Result
- Dataset: CUHK-01/03, VIPeR.
- 52.17% on CUHK03.
- Investigation on sensitivity of trade-off parameter.
- 71.8% on CUHK01 (pretrain on CUHK03).
- 35.76% on VIPeR.
本文提出了一种将单图表现(SIR)与跨图表现(CIR)相结合的方法来解决人工重识别问题。通过定义SIR和CIR的距离度量,并结合配对损失和三元组损失进行训练。实验结果表明,在CUHK-01/03和VIPeR数据集上取得了较好的性能。
742

被折叠的 条评论
为什么被折叠?



