1、对正态(高斯)分布的变量进行拉丁超立方采样
clc
clear all
close all
cst_Mu_Sigma = load( 'cst_Mu_Sigma.dat');
Mu = cst_Mu_Sigma(:,1);
Sigma = cst_Mu_Sigma(:,2);
D = size(Mu,1); % 维数
Covariance_Matrix = zeros(D,D);
for i = 1:D
Covariance_Matrix(i,i) = Sigma(i)^2;
end
N = 3000; % 样本点数目
UB = Mu + 3*Sigma;
LB = Mu - 3*Sigma; % 取值范围
X = lhsnorm(Mu, Covariance_Matrix, N);
figure(6)
plot(X(:,1),X(:,2),'*')
2、对均匀分布的变量进行拉丁超立方采样
clc
clear all
close all
cst_Mu_Sigma = load( 'cst_Mu_Sigma.dat');
Mu = cst_Mu_Sigma(:,1);
Sigma = cst_Mu_Sigma(:,2);
N = 3000; % 样本点数目
UB = Mu + 3*Sigma;
LB = Mu - 3*Sigma; % 取值范围
P = zeros(N,N);
D = size(MU,1); % 维数
Num = 100; % 重复次数
Lmax = 0;
for q = 1:Num
for i = 1:D
S(:, i) = ((randperm(N) -1 + rand(1, N)))' / N;
end
for i = 1:N
for j = 1:N
P(i,j) = sqrt((S(i,1)-S(j,1))^2 + (S(i,2)-S(j,2))^2);
end
end
P(P == 0) = 1;
m = min(P);
mm = min(m);
if mm>Lmax % mm越大越好,mm为二维矩阵P中的最小元素
Lmax = mm;
Sout = S;
end
end
Sout = Sout*(UB - LB) + LB; % 样本点的取值
figure(6)
plot(Sout(:,1),Sout(:,2),'*')