文章目录
1多维数组
a.shape=(3,2);既数组h=3,w=2
a.shape=(2,3,2);这里第一个2表示axis=0维度上的,三维数组中3,2)数组的个数,这里表示两个(3,2)数组。
压缩维度
- 这里axis=0指代哪里是很重要的知识点。深度学习中经常压缩一个维度,axis=0。
numpy.squeeze()函数。
语法:numpy.squeeze(a,axis = None);作用是将shape维度为1的去掉,但通常我们会指定axis=0,去除batchsize的维度。
扩充维度
- np.expand_dims(a, axis=1)将得到shape为(m, 1, n, c)的新数组,新数组中的元素与原数组a完全相同。
np.expand_dims(a, axis=2)将得到shape为(m, n, 1, c)的新数组,新数组中的元素与原数组a完全相同。
np.expand_dims(a, axis=3)将得到shape为(m, n, c, 1)的新数组,新数组中的元素与原数组a完全相同。
————————————————
版权声明:本文为优快云博主「dekiang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/weixin_41560402/article/details/105289015
2numpy类型转换
深度学习常见的float32类型。
- 函数
a.dtype = ‘float32’
>>> a = np.random.random(4)
>>> a
array([ 0.0945377 , 0.52199916, 0.62490646, 0.21260126])
>>> a.dtype
dtype('float64')
>><