python基础编程:使用sklearn进行对数据标准化、归一化以及将数据还原的方法

本文介绍了如何使用sklearn库进行数据的标准化、归一化以及数据还原操作。标准化使数据均值为0,标准差为1,而归一化则将数据映射到[0, 1]区间。文中详细阐述了两种方法的原理,并提供了使用示例。此外,还提到了动态数据时可采用的其他标准化方法,如反正切和自然对数方法。" 109338454,7765267,Vue开发常见问题与解决方案,"['Vue', 'vue-router', '样式', '前端开发']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天小编就为大家分享一篇使用sklearn进行对数据标准化、归一化以及将数据还原的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧在对模型训练时,为了让模型尽快收敛,一件常做的事情就是对数据进行预处理。

这里通过使用sklearn.preprocess模块进行处理。

一、标准化和归一化的区别

归一化其实就是标准化的一种方式,只不过归一化是将数据映射到了[0,1]这个区间中。

标准化则是将数据按照比例缩放,使之放到一个特定区间中。标准化后的数据的均值=0,标准差=1,因而标准化的数据可正可负。

二、使用sklearn进行标准化和标准化还原

原理:即先求出全部数据的均值和方差,再进行计算。

最后的结果均值为0,方差是1,从公式就可以看出。

但是当原始数据并不符合高斯分布的话,标准化后的数据效果并不好。

导入模块

from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt

通过生成随机点可以对比出标准化前后的数据分布形状并没有发生变化,只是尺度上缩小了。

cps = np.random.random_integers(0, 100, (100, 2))
  
ss = StandardScaler()
std_cps = ss.fit_transform(cps)
  
gs = gridspec.GridSpec(5,5)
fig = plt.figur
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值