python 的numpy库中的mean()函数用法介绍

本文详述了Python numpy库中mean()函数的使用,包括其功能和与np.nanmax的区别。在处理含有np.nan的数据时,mean()函数会受nan影响,而np.nanmax能排除nan计算最大值。此外,文章提到了np.min、np.std等函数在遇到nan时同样会返回nan,并指出速度上np.nanmax等函数更快。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章主要介绍了python 的numpy库中的mean()函数用法介绍,具有很好对参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

  1. mean() 函数定义:在这里插入图片描述
    在这里插入图片描述
    2 mean()函数功能:
求取均值

经常操作的参数为axis,以m * n矩阵举例:

axis 不设置值,对 m*n 个数求均值,返回一个实数

axis = 0:压缩行,对各列求均值,返回 1* n 矩阵

axis =1 :压缩列,对各行求均值,返回 m *1 矩阵

举例:>>> import numpy as np
 
>>> num1 = np.array([[1,2,3],[2,3,4],[3,4,5],[4,5,6]])
>>> now2 = np.mat(num1)
>>> now2
matrix([[1, 2, 3],
  [2, 3, 4],
  [3, 4, 5],
  [4, 5, 6]])
 
 
>>> np.mean(now2) # 对所有元素求均值
3.5
 
 
>>> np.mean(now2,0) # 压缩行,对各列求均值
matrix([[ 2.5, 3.5, 4.5]])
 
 
>>> np.mean(now2,1) # 压缩列,对各行求均值
matrix([[ 2.],
  [ 3.],
  [ 4.],
  [ 5.]])

补充拓展:numpy的np.nanmax和np.max区别(坑)

numpy的np.nanmax和np.array([1,2,3,np.nan]).max()的区别(坑)
原理

在计算dataframe最大值时,最先用到的一定是Series对象的max()方法(),最终结果是4。

s1 = pd.Series([1,2,3,4,np.nan])
s1_max = s1.max()

但是笔者由于数据量巨大,列数较多,于是为了加快计算速度,采用numpy进行最大值的计算,但正如以下代码,最终结果得到的是nan,而非4。发现,采用这种方式计算最大值,nan也会包含进去,并最终结果为nan。

s1 = pd.Series([1,2,3,4,np.nan])
s1_max = s1.values.max()
>>>nan

通过阅读numpy的文档发现,存在np.nanmax的函数,可以将np.nan排除进行最大值的计算,并得到想要的正确结果。

当然不止是max,min 、std、mean 均会存在列中含有np.nan时,s1.values.min /std/mean ()返回nan的情况。

速度区别

速度由快到慢依次:

s1 = pd.Series([1,2,3,4,5,np.nan])
#速度由快至慢
np.nanmax(s1.values) > np.nanmax(s1) > s1.max()

以上这篇python 的numpy库中的mean()函数用法介绍就是小编分享给大家的全部内容了
内容就以上怎么多,最后给大家推荐一个口碑不错的公众号【程序员学府】,这里有很多的老前辈学习技巧,学习心得,面试技巧,职场经历等分享,更为大家精心准备了零基础入门资料,实战项目资料,每天都有程序员定时讲解Python技术,分享一些学习的方法和需要留意的小细节在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值