Paper Reading (2024/04/10)

文章探讨了如何使用diffusionmode生成高精度的合成图像,如FreeMask方法,以增强模型的泛化能力。通过检测合成像素的损失,FreeMask确保只有那些对模型学习有显著贡献的区域被用于训练。同时,DiffuLT关注于让扩散模型在长尾识别任务中发挥效用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用diffusion mode生成synthetic images,用于enhance traning data:

1. FreeMask: Synthetic Images with Dense Annotations Make Stronger Segmentation Models (NurIPS 2024)

Challenges: 

  • Generating in-domain images
  • Generating high-quality images
  • Generating hard samples to improve model generalization ability

How to solve the challeges:

  • FreestyleNet, which can generate high-fedility images conditioned on semantic masks
  • Incorrectly synthesized regions or images will exhibit significant losses, if evaluated under a model pre-trained on real images ---- > if the loss of a synthetic pixel surpasses the average loss of its corresponding class by a certain margin, it will be marked as a noisy pixel and ignored during loss computation
  • with recorded class-wise average losses, it can calculate the overall loss of a semantic mask, which can represent its global hardness. It will generate more samples for those hard semantic masks and otherwise the opposite

短语:“It is even on par with”

2. DiffuLT: How to Make Diffusion Model Useful for Long-tail Recognition

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值