【SICP练习】33 练习1.39

本文介绍了一个简单的Scheme函数,用于通过连续分数计算tan-cf。定义了n和d的过程,展示了如何使用(cont-fracndk)函数,并强调了在结果转换为浮点数前使用exact-inexact函数的重要性。


练习1.39

没想到最后一道题如此简单,n和d的过程可以如下定义:

(define (n i)

   (if (= i 1)

      i

      (- (* i i))))

(define (d i)

    (- (* 2 i) 1))

这里我们就不再重复写成块结构了。

(define (tan-cf x k)

   (cont-frac n d k))

我测试了(tan-cf 100 100)以后吓了一跳,如果在(cont-frac n d k)前加一个exact-inexact就会好得多,这是将分数转换为浮点数的函数。

版权声明:本文为 NoMasp柯于旺 原创文章,未经许可严禁转载!欢迎访问我的博客:http://blog.youkuaiyun.com/nomasp

转载于:https://my.oschina.net/nomasp/blog/503289

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力滑模控制的强鲁棒性,用于解决复杂系统的控制问,尤其适用于存在不确定性外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性稳定性。此外,文档还列举了大量相关的科研方向技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值