(4)点云数据处理学习——其它官网例子

本文详细介绍了Open3D库的使用,包括加载与显示点云、下采样、法向量估计、点云剪切、上色及距离测量等操作。通过实例代码展示如何处理3D数据,适用于三维点云处理的学习和实践。

1、主要参考

(1)视频,大佬讲的就是好啊

【Open3D】三维点云python教程_哔哩哔哩_bilibili

(2)官方的github地址

GitHub - isl-org/Open3D: Open3D: A Modern Library for 3D Data Processing

(3)作者

@article{Zhou2018,
    author    = {Qian-Yi Zhou and Jaesik Park and Vladlen Koltun},
    title     = {{Open3D}: {A} Modern Library for {3D} Data Processing},
    journal   = {arXiv:1801.09847},
    year      = {2018},
}

(4)尤其注意,文档地址

Open3D: A Modern Library for 3D Data Processing — Open3D 0.16.0 documentation

2、相关模块

(1)Open3D-ML,一个机器学习的包

 3、各类官方例子

3.1打开椅子fragment.ply并显示

注意,运行下面程序后会自动下载相应的fragment.ply文件

(1)代码

import open3d as o3d
import numpy as np

print("Load a ply point cloud, print it, and render it")
ply_point_cloud = o3d.data.PLYPointCloud()
pcd = o3d.io.read_point_cloud(ply_point_cloud.path)

# 或者你有文件了
# path = "D:/RGBD_CAMERA/python_3d_process/fragment.ply"
# pcd = o3d.io.read_point_cloud(path)  # path为文件路径

print(pcd)
print(np.asarray(pcd.points))
o3d.visualization.draw_geometries([pcd],
                                  zoom=0.3412,
                                  front=[0.4257, -0.2125, -0.8795],
                                  lookat=[2.6172, 2.0475, 1.532],
                                  up=[-0.0694, -0.9768, 0.2024])

(2)显示结果

注意:按键盘+或者-可以修改点云大小,鼠标可以转动角度

3.2下采样downsampling

3.2.1包围盒下采样

(1)函数,参数应该就包围盒的大小(体素)

voxel_down_sample(voxel_size=0.05)

(2)说明

体素下采样使用常规体素网格从输入点云创建统一的下采样点云。它经常被用作许多点云处理任务的预处理步骤。该算法分为两个步骤:

1.点被装入体素中

2.每个体素通过计算体素内部所有点的平均来生成一个点

(3)测试代码

import open3d as o3d
import numpy as np

# print("Load a ply point cloud, print it, and render it")
# ply_point_cloud = o3d.data.PLYPointCloud()
# pcd = o3d.io.read_point_cloud(ply_point_cloud.path)

# 或者你有文件了
path = "D:/RGBD_CAMERA/python_3d_process/fragment.ply"
pcd = o3d.io.read_point_cloud(path)  # path为文件路径
print(pcd)

#--------------------------------------------------------
#(例子一)显示
#---------------------------------------------------------
# print(pcd)
# print(np.asarray(pcd.points))
# o3d.visualization.draw_geometries([pcd],
#                                   zoom=0.3412,
#                                   front=[0.4257, -0.2125, -0.8795],
#                                   lookat=[2.6172, 2.0475, 1.532],
#                                   up=[-0.0694, -0.9768, 0.2024])



#--------------------------------------------------------
#(例子二)下采样
#---------------------------------------------------------
downpcd = pcd.voxel_down_sample(voxel_size=0.05)
# downpcd = pcd.voxel_down_sample(voxel_size=0.5)
print(downpcd)
o3d.visualization.draw_geometries([downpcd],
                                  zoom=0.3412,
                                  front=[0.4257, -0.2125, -0.8795],
                                  lookat=[2.6172, 2.0475, 1.532],
                                  up=[-0.0694, -0.9768, 0.2024])

(4)测试结果

1)0.05

采样前后的数据

PointCloud with 196133 points.
PointCloud with 4718 points.

 2)0.5

采样前后的数据

PointCloud with 196133 points.
PointCloud with 58 points.

3.3定点法向量估计

(1)测试代码

import open3d as o3d
import numpy as np

# print("Load a ply point cloud, print it, and render it")
# ply_point_cloud = o3d.data.PLYPointCloud()
# pcd = o3d.io.read_point_cloud(ply_point_cloud.path)

# 或者你有文件了
path = "D:/RGBD_CAMERA/python_3d_process/fragment.ply"
pcd = o3d.io.read_point_cloud(path)  # path为文件路径
print(pcd)

#--------------------------------------------------------
#(例子一)显示
#---------------------------------------------------------
# print(pcd)
# print(np.asarray(pcd.points))
# o3d.visualization.draw_geometries([pcd],
#                                   zoom=0.3412,
#                                   front=[0.4257, -0.2125, -0.8795],
#                                   lookat=[2.6172, 2.0475, 1.532],
#                                   up=[-0.0694, -0.9768, 0.2024])



#--------------------------------------------------------
#(例子二)下采样
#---------------------------------------------------------
downpcd = pcd.voxel_down_sample(voxel_size=0.05)
# # downpcd = pcd.voxel_down_sample(voxel_size=0.5)
# print(downpcd)
# o3d.visualization.draw_geometries([downpcd],
#                                   zoom=0.3412,
#                                   front=[0.4257, -0.2125, -0.8795],
#                                   lookat=[2.6172, 2.0475, 1.532],
#                                   up=[-0.0694, -0.9768, 0.2024])


#--------------------------------------------------------
#(例子三)定点法向量估计
#---------------------------------------------------------
print("Recompute the normal of the downsampled point cloud")
downpcd.estimate_normals(
    search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([downpcd],
                                  zoom=0.3412,
                                  front=[0.4257, -0.2125, -0.8795],
                                  lookat=[2.6172, 2.0475, 1.532],
                                  up=[-0.0694, -0.9768, 0.2024],
                                  point_show_normal=True)
print("Print a normal vector of the 0th point")
print(downpcd.normals[0])
print("Print the normal vectors of the first 10 points")
print(np.asarray(downpcd.normals)[:10, :])

(2)测试结果

注意:可以通过键盘上的按键N来回切换查看向量

3.4剪切点云数据

(1)两个主要函数

  • read_selection_polygon_volume读取指定多边形选择区域的json文件。
  • vol.crop_point_cloud (pcd)过滤掉点。只剩下椅子了。

(2)使用以下代码后会自动下载并解压2个文件

 (3)测试代码如下

import open3d as o3d
import numpy as np


#--------------------------------------------------------
#(例子四)剪切点云
#---------------------------------------------------------
demo_crop_data = o3d.data.DemoCropPointCloud()
pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
chair = vol.crop_point_cloud(pcd)
o3d.visualization.draw_geometries([chair],
                                  zoom=0.7,
                                  front=[0.5439, -0.2333, -0.8060],
                                  lookat=[2.4615, 2.1331, 1.338],
                                  up=[-0.1781, -0.9708, 0.1608])

(4)测试结果如图

(5)使用本地文件的方法如下:

import open3d as o3d
import numpy as np


#--------------------------------------------------------
#(例子四)剪切点云
#---------------------------------------------------------
# demo_crop_data = o3d.data.DemoCropPointCloud()
# pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
# vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
# chair = vol.crop_point_cloud(pcd)
# o3d.visualization.draw_geometries([chair],
#                                   zoom=0.7,
#                                   front=[0.5439, -0.2333, -0.8060],
#                                   lookat=[2.4615, 2.1331, 1.338],
#                                   up=[-0.1781, -0.9708, 0.1608])


#--------------------------------------------------------
#(例子四)剪切点云--使用本地
#---------------------------------------------------------

plypath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/fragment.ply"
pcd = o3d.io.read_point_cloud(plypath)  # path为文件路径
jsonpath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/cropped.json"

vol = o3d.visualization.read_selection_polygon_volume(jsonpath)
chair = vol.crop_point_cloud(pcd)
o3d.visualization.draw_geometries([chair],
                                  zoom=0.7,
                                  front=[0.5439, -0.2333, -0.8060],
                                  lookat=[2.4615, 2.1331, 1.338],
                                  up=[-0.1781, -0.9708, 0.1608])

 (6)其中cropped.json的内容如下:

{
	"axis_max" : 4.022921085357666,
	"axis_min" : -0.76341366767883301,
	"bounding_polygon" : 
	[
		[ 2.6509309513852526, 0.0, 1.6834473132326844 ],
		[ 2.5786428246917148, 0.0, 1.6892074266735244 ],
		[ 2.4625790337552154, 0.0, 1.6665777078297999 ],
		[ 2.2228544982251655, 0.0, 1.6168160446813649 ],
		[ 2.166993206001413, 0.0, 1.6115495157201662 ],
		[ 2.1167895865303286, 0.0, 1.6257706054969348 ],
		[ 2.0634657721747383, 0.0, 1.623021658624539 ],
		[ 2.0568612343437236, 0.0, 1.5853892911207643 ],
		[ 2.1605399001237027, 0.0, 0.96228993255083017 ],
		[ 2.1956669387205228, 0.0, 0.95572746049785073 ],
		[ 2.2191318790575583, 0.0, 0.88734449982108754 ],
		[ 2.2484881847925919, 0.0, 0.87042807267013633 ],
		[ 2.6891234157295827, 0.0, 0.94140677988967603 ],
		[ 2.7328692490470647, 0.0, 0.98775740674840251 ],
		[ 2.7129337547575547, 0.0, 1.0398850034649203 ],
		[ 2.7592174072415405, 0.0, 1.0692940558509485 ],
		[ 2.7689216419453428, 0.0, 1.0953914441371593 ],
		[ 2.6851455625455669, 0.0, 1.6307334122162018 ],
		[ 2.6714776099981239, 0.0, 1.675524657088997 ],
		[ 2.6579576128816544, 0.0, 1.6819127849749496 ]
	],
	"class_name" : "SelectionPolygonVolume",
	"orthogonal_axis" : "Y",
	"version_major" : 1,
	"version_minor" : 0
}

3.5 给点云上颜色

(1)参数,后面三个是RGB的颜色,取值都是0--1

paint_uniform_color([1, 0.706, 0])

(2)代码

import open3d as o3d
import numpy as np


#--------------------------------------------------------
#(例子四)剪切点云--使用本地
#---------------------------------------------------------

plypath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/fragment.ply"
pcd = o3d.io.read_point_cloud(plypath)  # path为文件路径
jsonpath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/cropped.json"

vol = o3d.visualization.read_selection_polygon_volume(jsonpath)
chair = vol.crop_point_cloud(pcd)
# o3d.visualization.draw_geometries([chair],
#                                   zoom=0.7,
#                                   front=[0.5439, -0.2333, -0.8060],
#                                   lookat=[2.4615, 2.1331, 1.338],
#                                   up=[-0.1781, -0.9708, 0.1608])

print("Paint chair")
chair.paint_uniform_color([1, 0.706, 0])
o3d.visualization.draw_geometries([chair],
                                  zoom=0.7,
                                  front=[0.5439, -0.2333, -0.8060],
                                  lookat=[2.4615, 2.1331, 1.338],
                                  up=[-0.1781, -0.9708, 0.1608])

(3)测试结果

3.6点云距离测量

(1)函数

compute_point_cloud_distance

(2)说明

Open3D提供了compute_point_cloud_distance方法来计算从源点云到目标点云的距离。也就是说,它为源点云中的每个点计算到目标点云中最近点的距离。 

(3)测试代码,(以下代码,找到距离大于椅子设定值的物体,如0.01或者0.2;起到了删除物体后剩余物体显示的功能) 

import open3d as o3d
import numpy as np


#--------------------------------------------------------
#(例子四)剪切点云--使用本地
#---------------------------------------------------------

plypath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/fragment.ply"
pcd = o3d.io.read_point_cloud(plypath)  # path为文件路径
jsonpath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/cropped.json"

vol = o3d.visualization.read_selection_polygon_volume(jsonpath)
chair = vol.crop_point_cloud(pcd)


# 把和椅子的距离大于0.01的找出来
dists = pcd.compute_point_cloud_distance(chair)
dists = np.asarray(dists)
ind = np.where(dists > 0.01)[0]
# ind = np.where(dists > 0.2)[0]
pcd_without_chair = pcd.select_by_index(ind)
o3d.visualization.draw_geometries([pcd_without_chair],
                                  zoom=0.3412,
                                  front=[0.4257, -0.2125, -0.8795],
                                  lookat=[2.6172, 2.0475, 1.532],
                                  up=[-0.0694, -0.9768, 0.2024])

(4)测试结果

1)距离大于0.01(ind = np.where(dists > 0.01)[0])

 2)距离大于0.2(ind = np.where(dists > 0.2)[0])

3.7 包围盒(Bounding volumes)

(1)函数

  • get_axis_aligned_bounding_box    -- 根据坐标获取物体的包围盒(x,y,z坐标方向)
  • get_oriented_bounding_box     --  根据物体的角度获取物体的包围盒(可围着物体旋转)

PS:感觉有点像图像检测中的外接矩形(x,y坐标),最小外接矩形(围着物体可旋转),待验证。

(2)说明

点云的几何类型和Open3D中的所有其他几何类型一样具有边界卷。目前,Open3D实现了axisaligned dboundingbox和OrientedBoundingBox,它们也可用于裁剪几何图形。 

(3)测试代码

import open3d as o3d
import numpy as np


#--------------------------------------------------------
#(例子四)剪切点云--使用本地
#---------------------------------------------------------

plypath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/fragment.ply"
pcd = o3d.io.read_point_cloud(plypath)  # path为文件路径
jsonpath = "D:/RGBD_CAMERA/python_3d_process/DemoCropPointCloud/cropped.json"

vol = o3d.visualization.read_selection_polygon_volume(jsonpath)
chair = vol.crop_point_cloud(pcd)


# 把和椅子的距离大于0.01的找出来
aabb = chair.get_axis_aligned_bounding_box()
aabb.color = (1, 0, 0)
obb = chair.get_oriented_bounding_box()
obb.color = (0, 1, 0)
o3d.visualization.draw_geometries([chair, aabb, obb],
                                  zoom=0.7,
                                  front=[0.5439, -0.2333, -0.8060],
                                  lookat=[2.4615, 2.1331, 1.338],
                                  up=[-0.1781, -0.9708, 0.1608])

(4)测试结果

### 关于点云数据处理为规则曲面的方法和工具 点云数据通常来源于三维扫描设备或其他传感器技术,其特点是离散性和无序性。为了将其转换为规则曲面,可以采用多种方法和技术。 #### 方法概述 一种常见的方法是基于插值或拟合的技术来构建连续表面模型。例如,径向基函数 (RBF) 插值是一种有效的方式,它能够通过定义一组控制点并计算这些点之间的距离权重来生成平滑的曲面[^3]。另一种广泛使用的方法是多项式回归分析,这种方法适用于具有较高规律性的点云分布情况,并能提供较好的逼近效果[^4]。 对于更复杂的几何形状,则可能需要用到非均匀有理B样条(NURBS),这是一种强大的数学建模手段,在计算机辅助设计(CAD)领域非常流行。NURBS允许创建精确表示自由形式曲线和曲面所需的灵活性以及高精度特性[^5]。 #### 工具推荐 在实际应用中,有许多软件包支持上述提到的各种算法实现: - **CloudCompare**: 这是一个开源平台,提供了丰富的功能用于管理、可视化及处理大规模三维点集。尽管它的主要用途集中在比较不同版本的数据集上,但它也包含了基本的网格化选项以便初步探索如何形成简单的多边形网状结构[^6]。 - **MeshLab**: 另一款免费且跨平台的应用程序,专注于三角形网格编辑与修复操作的同时还具备一定的点云计算能力。用户可以通过内置滤镜执行诸如体素下采样、法线估计等预处理步骤之后再尝试不同的重建策略直至获得满意的成果为止[^7]。 - **Python库-PyVista/Trimesh/Open3D**: 如果倾向于编程方式解决问题的话,那么这几个现代Python扩展模块将是不错的选择之一。它们各自拥有独特的侧重点——PyVista强调交互体验;Trimesh注重效率优化;而Open3D则综合考虑性能表现与易用程度两者之间取得平衡。借助这些框架不仅可以轻松加载外部文件格式而且还能灵活调用底层API完成定制开发需求[^8][^9]. ```python import pyvista as pv from trimesh import PointCloud import open3d as o3d # PyVista Example cloud = pv.PolyData(points) surf = cloud.delaunay_2d() # Trimesh Example pc = PointCloud(vertices=points) mesh = pc.convex_hull # Open3D Example pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) alpha_shape, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(pcd, alpha_value) ``` 以上代码片段展示了三种主流库分别针对同一目标所采取的不同途径:`pyvista`利用Delaunay三角剖分直接得到近似平面区域覆盖原始样本集合;`trimesh`则是先构造凸壳作为初始猜测然后再逐步细化调整边界条件直到满足收敛准则停止迭代过程;至于最后那个来自`open3d`的例子,则引入参数α调节球体积大小从而动态决定哪些部分应该被纳入最终输出之中[^10]. ### 结论 综上所述,从理论基础到具体实践环节均存在多样化的解决方案可供选择。无论是依赖成熟商业产品还是自己动手编写脚本都能达到预期目的只是所需投入成本有所差异罢了。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值