题目要求在给定两个长度分别为m和n的有序序列时,找出这两个序列合起后的中位数。并且要求时间复杂度为O(log(m+n))。
首先,中位数的定义是,当序列长度为偶数时,中位数的值为序列中间两个数的均值;当序列为奇数时,中位数为正中间的数。当序列长度为n时,其值分别为(array[n/2]+array[n/2-1])/2、array[n/2]。为了达到时间复杂度的要求,故采用两个索引分别同时遍历两个序列,并且用last和cur来记录当前值和上一个值,当cur记录的值的索引为(n/2)时,则跳出循环。具体求解,如代码所示:
C++:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int len1 = nums1.size();
int len2 = nums2.size();
int last = 0,cur = 0;
int mid = (len1+len2)/2;
int k = 0,i = 0,j = 0;
while(k <= mid)
{
last = cur;
if(i == len1)
{
cur = nums2[j];
j++;
}
else if(j == len2)
{
cur = nums1[i];
i++;
}
else if(nums1[i] < nums2[j])
{
cur = nums1[i];
i++;
}
else
{
cur = nums2[j];
j++;
}
k++;
}
return (len1+len2)%2?cur:double(last+cur)/2;
}
python:
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
last = 0
cur = 0
len1 = len(nums1)
len2 = len(nums2)
mid = (len1 + len2)/2
i = 0
j = 0
k = 0
while(k <= mid):
last = cur
if i == len1:
cur = nums2[j]
j = j + 1
elif j == len2:
cur = nums1[i]
i = i + 1
elif nums1[i] < nums2[j]:
cur = nums1[i]
i = i + 1
else:
cur = nums2[j]
j = j + 1
k = k + 1
if (len1+len2)%2:
return cur
else:
return (last+cur)/2.0