basic CNN

回顾

下面这种由线形层构成的网络是全连接网络。
在这里插入图片描述
对于图像数据而言,卷积神经网络更常用。

卷积神经网络

通过二维卷积可以实现图像特征的自动提取,卷积输出的称为特征图;特征提取之后可以通过全连接层构造分类器进行分类。

  • 特征提取
    • 卷积
    • 池化
  • 分类
    • 展开
    • 全连接
      在这里插入图片描述
      在卷积神经网络里面,我们会把输入图片划分成一个个的小格子(cell)
      在这里插入图片描述

卷积

图像中不同数据窗口的数据和卷积核作内积的操作叫做卷积,本质是提取图像不同频段的特征。和图像处理中的高斯模糊核原理一样。

在这里插入图片描述

卷积核

  • 带着一组固定权重的神经元,可以用来提取特定的特征(例如可以提取物体轮廓、颜色深浅等)
  • 卷积核大小:3x3,5x5,7x7
  • 卷积核的通道数与被卷积的图片通道数相同

卷积过程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
输入为3通道的卷积计算过程如下:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
n通道输入的卷积:
在这里插入图片描述
如果想要输出通道为M,则需要M个卷积核:
在这里插入图片描述
注意:卷积核的通道要求和输入通道一样;卷积核的个数要求和输出通道数一样。

卷积后图像尺寸计算公式:

在这里插入图片描述

代码

import torch
in_channels,out_channels=5,10
width,height=100,100
kernel_size=3
batch_size=1

input = torch.randn(batch_size,in_channels,width,height)#生成0-1正态分布
conv_layer=torch.nn.Conv2d(in_channels,out_channels,kernel_size=kernel_size)
output=conv_layer(input)

print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

结果:

torch.Size([1, 5, 100, 100])
torch.Size([1, 10, 98, 98])
torch.Size([10, 5, 3, 3])

padding

进行卷积之后,图像大小(W、H)可能会发生改变;生成的特征图大小不是我们想要的,比如说我们希望特征图大小在卷积之后不发生变化;那么可以使用padding在输入图像像素周围进行填充,padding=1就是填充一圈0.
在这里插入图片描述
在这里插入图片描述

代码

import torch
in_channels,out_channels=5,10
width,height=100,100
kernel_size=3
batch_size=1
input=[3,4,6,5,7,
       2,4,6,8,2,
       1,6,7,8,4,
       9,7,4,6,2,
       3,7,5,4,1]
input=torch.Tensor(input).view(1,1,5,5)
conv_layer=torch.nn.Conv2d(1,1,kernel_size=3,padding=1,bias=False)#paddings=1(扩充一圈)相当于扩充原来矩阵维数,比如4*4,变成5*5
kernel=torch.<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值