今天晚上水课时候同学给发来一道十分阴间的题,
当然可能我这种菜鸡觉得阴间有些大佬觉得已经够简单了,但是我还是这么不要脸的发出来,也算水水活跃度
第一次写出来小错不断,这水博客时候又改了改,但是不免有错,所以如果有错请诸位大佬不吝赐教
这关键是里面那个乘积挺难处理的,下面处理一下
引理1
x2n+1−1=(x−1)(x−α1)(x−α2)....(x−αn−1)=(x−1)∏k=1n(x2−2xcos2kπ2n+1+1)
x^{2n+1}-1=(x-1)(x-\alpha_1)(x-\alpha_2)....(x-\alpha_{n-1})\\
=(x-1)\prod_{k=1}^{n}(x^2-2x\cos \frac{2k\pi}{2n+1}+1)
x2n+1−1=(x−1)(x−α1)(x−α2)....(x−αn−1)=(x−1)k=1∏n(x2−2xcos2n+12kπ+1)
这个比较好证明,把复数根全求出来而后首位配对
同理
x2n−1=(x−1)(x+1)∏k=1n−1(x2−2xcoskπn)
x^{2n}-1=(x-1)(x+1)\prod_{k=1}^{n-1}(x^2-2x\cos \frac{k\pi}{n})
x2n−1=(x−1)(x+1)k=1∏n−1(x2−2xcosnkπ)
引理2
cosπ2n+1cos2π2n+1....cosnπ2n+1=12n
\cos\frac{\pi}{2n+1}\cos \frac{2\pi}{2n+1}....\cos \frac{n\pi}{2n+1}=\frac{1}{2^n}
cos2n+1πcos2n+12π....cos2n+1nπ=2n1
引理1中带进去x=−1x=-1x=−1
−2=(−2)∏k=1n(2+2cos2kπ2n+1)⇒1=∏k=1n(2+2cos2kπ2n+1)⇒12n=∏k=1n(1+cos2kπ2n+1)⇒∏k=1ncoskπ2n+1=12n
-2=(-2)\prod_{k=1}^{n}(2+2\cos \frac{2k\pi}{2n+1})\Rightarrow \\1=\prod_{k=1}^{n}(2+2\cos \frac{2k\pi}{2n+1})\Rightarrow\\
\frac{1}{2^n}=\prod_{k=1}^{n}(1+\cos \frac{2k\pi}{2n+1})\Rightarrow\\ \prod_{k=1}^{n}\cos \frac{k\pi}{2n+1}=\frac{1}{2^n}
−2=(−2)k=1∏n(2+2cos2n+12kπ)⇒1=k=1∏n(2+2cos2n+12kπ)⇒2n1=k=1∏n(1+cos2n+12kπ)⇒k=1∏ncos2n+1kπ=2n1
下面开始变形
∏k=12ncoskπ2n+1=∏k=1ncoskπ2n+1∏k=n+12ncoskπ2n+1
\prod_{k=1}^{2n}\cos \frac{k\pi}{2n+1}=\prod_{k=1}^{n}\cos \frac{k\pi}{2n+1}\prod_{k=n+1}^{2n}\cos \frac{k\pi}{2n+1}
k=1∏2ncos2n+1kπ=k=1∏ncos2n+1kπk=n+1∏2ncos2n+1kπ
其中
∏k=n+12ncoskπ2n+1=∏k=n+12nsin(π2−kπ2n+1)=sin−π4n+2sin−3π4n+2...sin−(2n+1)π4n+2=(−1)n∏k=1nsin(2k−1)π4n+2⋅sinπ2⋅(−1)
\\\prod_{k=n+1}^{2n}\cos \frac{k\pi}{2n+1}=\prod_{k=n+1}^{2n}\sin (\frac{\pi}{2}-\frac{k\pi}{2n+1})
\\=\sin \frac{-\pi}{4n+2}\sin\frac{-3\pi}{4n+2}...\sin \frac{-(2n+1)\pi}{4n+2}\\=(-1)^n\prod_{k=1}^{n}\sin\frac{(2k-1)\pi}{4n+2}·\sin \frac{\pi}{2}·(-1)
k=n+1∏2ncos2n+1kπ=k=n+1∏2nsin(2π−2n+1kπ)=sin4n+2−πsin4n+2−3π...sin4n+2−(2n+1)π=(−1)nk=1∏nsin4n+2(2k−1)π⋅sin2π⋅(−1)
由引理1的做法
x2m+1=∏k=1n(x2−2xcos(2k−1)π2n+1+1)
x^{2m}+1=\prod_{k=1}^{n}(x^2-2x\cos\frac{(2k-1)\pi}{2n+1}+1)
x2m+1=k=1∏n(x2−2xcos2n+1(2k−1)π+1)
带入x=1x=1x=1
2=∏k=1n(2−2cos(2k−1)π2n+1)12n−1=∏k=1n(1−(1−2sin2(2k−1)π4n+2))
2=\prod_{k=1}^{n}(2-2\cos\frac{(2k-1)\pi}{2n+1})\\
\frac{1}{2^{n-1}}=\prod_{k=1}^{n}(1-(1-2\sin^2\frac{(2k-1)\pi}{4n+2}))
2=k=1∏n(2−2cos2n+1(2k−1)π)2n−11=k=1∏n(1−(1−2sin24n+2(2k−1)π))
下面就好弄了
参考书:丘砖