#include<stdio.h>
#include<stdlib.h>
#define MAXVEX 100 //最大顶点数
typedef char VertexType; //顶点
typedef int EdgeType; //权值
#define INFINITY 65535 /*用65535来代表∞*/
//Dist的存储结构
typedef struct
{
int length; //当前最短路径长度
int pre; //路径最后经过的顶点
}Dist;
typedef struct
{
int from; //边的始点
int to; //边的终点
EdgeType weight; //权重
}Edge; //边的结构
//图的结构
typedef struct
{
int numVertex; //顶点个数
int numEdge; //边的个数
VertexType vexs[MAXVEX]; /*顶点表*/
int Indegree[MAXVEX]; //顶点入度
EdgeType arc[MAXVEX][MAXVEX]; //边表
Dist D[MAXVEX][MAXVEX];
}Graph;
//初始化图
void InitGraph(Graph * G,int numVert,int numEd ) //传入顶点个数,边数
{
G->numVertex=numVert;
G->numEdge=numEd;
for(int i=0;i<numVert;i++)
{
G->Indegree[i]=0;
for(int j=0;j<numVert;j++)
{
G->arc[i][j]=INFINITY;
if(i==j)
{
G->arc[i][j]=0;
}
}
}
return ;
}
//判断是否为边
bool IsEdge(Edge oneEdge)
{
if(oneEdge.weight>0 && oneEdge.weight!=INFINITY && oneEdge.to>=0)
{
return true;
}
else
{
return false;
}
}
//建立有向图的邻接矩阵
void CreatGraph(Graph * G)
{
int i,j,k,w;
printf("请输入%d个顶点元素:\n",G->numVertex);
for(i=0;i<G->numVertex;i++)
{
scanf(" %c",&G->vexs[i]);
}
for(k=0;k<G->numEdge;k++)
{
printf("请输入边(Vi,Vj)的下标Vi,Vj,和权重w:\n");
scanf("%d%d%d",&i,&j,&w);
G->Indegree[j]++;
G->arc[i][j]=w;
}
}
//返回顶点个数
int VerticesNum(Graph * G)
{
return G->numVertex;
}
//返回依附于顶点的第一条边
Edge FirstEdge(Graph * G,int oneVertex)
{
Edge firstEdge;
firstEdge.from=oneVertex;
for(int i=0;i<G->numVertex;i++)
{
if(G->arc[oneVertex][i]!=0 && G->arc[oneVertex][i]!=INFINITY)
{
firstEdge.to=i;
firstEdge.weight=G->arc[oneVertex][i];
break;
}
}
return firstEdge;
}
//返回oneEdge的终点
int ToVertex(Edge oneEdge)
{
return oneEdge.to;
}
//返回与preEdge有相同顶点的下一条边
Edge NextEdge(Graph * G,Edge preEdge)
{
Edge myEdge;
myEdge.from=preEdge.from; //边的始点与preEdge的始点相同
if(preEdge.to<G->numVertex) //如果preEdge.to+1>=G->numVertex;将不存在下一条边
for(int i=preEdge.to+1;i<G->numVertex;i++) //找下一个arc[oneVertex][i]
{ //不为0的i
if(G->arc[preEdge.from][i]!=0 && G->arc[preEdge.from][i]!=INFINITY)
{
myEdge.to=i;
myEdge.weight=G->arc[preEdge.from][i];
break;
}
}
return myEdge;
}
//初始化Dist数组
void Init_Dist(Graph * G)
{
int i,j;
for(i=0;i<G->numVertex;i++)
{
for(j=0;j<G->numVertex;j++)
{
if(i==j)
{
G->D[i][j].length=0;
G->D[i][j].pre=i;
}
else
{
G->D[i][j].length=INFINITY;
G->D[i][j].pre=-1;
}
}
}
}
void Floyd(Graph * G)
{
int v;
Init_Dist(G); //初始化Dist数组
for(v=0;v<G->numVertex;v++)
{
for(Edge e=FirstEdge(G,v);IsEdge(e);e=NextEdge(G,e))
{
G->D[v][ToVertex(e)].length=e.weight;
G->D[v][ToVertex(e)].pre=v;
}
} //更改Dist数组的数据
//顶点i到顶点j的路径经过顶点v,如果变短就改变Dist数组里的数据
for(v=0;v<G->numVertex;v++)
{
for(int i=0;i<G->numVertex;i++)
{
for(int j=0;j<G->numVertex;j++)
{
if(G->D[i][j].length>(G->D[i][v].length+G->D[v][j].length))
{
G->D[i][j].length=G->D[i][v].length+G->D[v][j].length;
G->D[i][j].pre=G->D[v][j].pre;
}
}
}
}
}
//输出Dist数组
void Print_Dist(Graph * G)
{
for(int i=0;i<G->numVertex;i++)
{
for(int j=0;j<G->numVertex;j++)
{
printf("elem:%c length:%d pre:%d\n",G->vexs[i],G->D[i][j].length,G->D[i][j].pre);
}
}
printf("\n");
}
int main()
{
Graph G;
int numVert,numEd;
printf("请输入顶点数和边数:\n");
scanf("%d%d",&numVert,&numEd);
InitGraph(&G,numVert,numEd);
CreatGraph(&G);
Floyd(&G);
Print_Dist(&G);
return 0;
}
Floyd算法
最新推荐文章于 2024-07-29 20:39:36 发布